Andrew M Hernandez, Christopher O Bayne, Cyrus Bateni, Ramit Lamba, John M Boone
{"title":"Extremity radiographs derived from low-dose ultra-high-resolution CT: a phantom study.","authors":"Andrew M Hernandez, Christopher O Bayne, Cyrus Bateni, Ramit Lamba, John M Boone","doi":"10.1007/s00256-024-04600-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To demonstrate the potential of low-dose ultra-high-resolution CT (UHRCT) images to generate high-quality radiographic images on extremity phantoms and to estimate the radiation dose required for this.</p><p><strong>Materials and methods: </strong>A hand and knee phantom containing real human bones was imaged on an UHRCT scanner at full-dose, half-dose, and quarter-dose levels using a high-resolution extremity protocol. The raw data was reconstructed using both filtered back projection (FBP) and an iterative reconstruction algorithm (AIDR3D). Using custom designed software, each CT volume data set was converted to attenuation coefficients, and then a synthesized radiograph (synDX) was generated by forward projecting the volume data sets from a point source onto a 2D synthetic detector. The signal-to-noise ratio (SNR) was measured in the synDXs across all dose levels and the root-mean-squared error (RMSE) was computed with the FD synDXs as the reference.</p><p><strong>Results: </strong>The proposed workflow generates high-quality synDXs at any arbitrary angle. For FBP, the SNR largely tracked with the radiation dose levels for both the knee and hand phantoms. For the knee phantom, iterative reconstruction provided a 6.1% higher SNR when compared to FBP. The RMSE was overall higher for the lowest dose levels and monotonically decreased with increasing dose. No substantial differences were observed qualitatively in the visualization of skeletal detail of the phantoms.</p><p><strong>Conclusion: </strong>The fine detail provided by UHRCT acquisitions of extremities facilitates the ability to generate quality radiographs, potentially eliminating the need for additional scanning on a conventional digital radiography system.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00256-024-04600-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To demonstrate the potential of low-dose ultra-high-resolution CT (UHRCT) images to generate high-quality radiographic images on extremity phantoms and to estimate the radiation dose required for this.
Materials and methods: A hand and knee phantom containing real human bones was imaged on an UHRCT scanner at full-dose, half-dose, and quarter-dose levels using a high-resolution extremity protocol. The raw data was reconstructed using both filtered back projection (FBP) and an iterative reconstruction algorithm (AIDR3D). Using custom designed software, each CT volume data set was converted to attenuation coefficients, and then a synthesized radiograph (synDX) was generated by forward projecting the volume data sets from a point source onto a 2D synthetic detector. The signal-to-noise ratio (SNR) was measured in the synDXs across all dose levels and the root-mean-squared error (RMSE) was computed with the FD synDXs as the reference.
Results: The proposed workflow generates high-quality synDXs at any arbitrary angle. For FBP, the SNR largely tracked with the radiation dose levels for both the knee and hand phantoms. For the knee phantom, iterative reconstruction provided a 6.1% higher SNR when compared to FBP. The RMSE was overall higher for the lowest dose levels and monotonically decreased with increasing dose. No substantial differences were observed qualitatively in the visualization of skeletal detail of the phantoms.
Conclusion: The fine detail provided by UHRCT acquisitions of extremities facilitates the ability to generate quality radiographs, potentially eliminating the need for additional scanning on a conventional digital radiography system.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.