{"title":"CircRSU1 alleviates LPS-induced human pulmonary microvascular endothelial cell injury by targeting miR-1224-5p/ITGA5 axis.","authors":"Yongtao Cheng, Fenggong Wang, Cui Guo, Shenghua Yuan, Jianzhong Li, Yuangang Zhang","doi":"10.4149/gpb_2023031","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the potential functions and regulatory mechanism of circRSU1 on septic acute lung injury (sepsis-ALI) progression. We used lipopolysaccharide (LPS)-stimulated human pulmonary microvascular endothelial cells (HPMECs) to establish the cell model of sepsis-ALI in vitro. qRT-PCR and Western blotting were used for the detection of genes and proteins. The migration and tubulogenesis of HPMECs were assessed by transwell, wound healing, and tube formation assays. Inflammatory factors were detected by ELISA analysis. Cell permeability (PA) was determined by transendothelial resistance (TEER) and fluorescein isothiocyanate (FITC) with transwell assay. The interaction between miR-1224-5p and circRSU1 or ITGA5 (Integrin Subunit Alpha 5) was studied by dual-luciferase reporter and RNA pull-down assays. CircRSU1 expression was decreased after LPS treatment in HPMECs. Functionally, re-expression of circRSU1 in HPMECs could alleviate LPS-induced inflammatory response, the inhibition of cell migration and tube formation and enhancement of cell permeability. Mechanistically, circRSU1 acted as a sponge for miR-1224-5p. LPS treatment enhanced miR-1224-5p expression, and inhibition of miR-1224-5p reversed LPS-evoked HPMEC dysfunction mentioned above. Moreover, miR-1224-5p could abolish the protective effects of circRSU1 on HPMECs. In addition, miR-1224-5p directly targeted ITGA5, and circRSU1 was able to regulate ITGA5 expression via interacting with miR-1224-5p. CircRSU1 could alleviate LPS-induced HPMEC injury by miR-1224-5p/ITGA5 axis, indicating the potential molecular contribution of circRSU1 in sepsis-ALI.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4149/gpb_2023031","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the potential functions and regulatory mechanism of circRSU1 on septic acute lung injury (sepsis-ALI) progression. We used lipopolysaccharide (LPS)-stimulated human pulmonary microvascular endothelial cells (HPMECs) to establish the cell model of sepsis-ALI in vitro. qRT-PCR and Western blotting were used for the detection of genes and proteins. The migration and tubulogenesis of HPMECs were assessed by transwell, wound healing, and tube formation assays. Inflammatory factors were detected by ELISA analysis. Cell permeability (PA) was determined by transendothelial resistance (TEER) and fluorescein isothiocyanate (FITC) with transwell assay. The interaction between miR-1224-5p and circRSU1 or ITGA5 (Integrin Subunit Alpha 5) was studied by dual-luciferase reporter and RNA pull-down assays. CircRSU1 expression was decreased after LPS treatment in HPMECs. Functionally, re-expression of circRSU1 in HPMECs could alleviate LPS-induced inflammatory response, the inhibition of cell migration and tube formation and enhancement of cell permeability. Mechanistically, circRSU1 acted as a sponge for miR-1224-5p. LPS treatment enhanced miR-1224-5p expression, and inhibition of miR-1224-5p reversed LPS-evoked HPMEC dysfunction mentioned above. Moreover, miR-1224-5p could abolish the protective effects of circRSU1 on HPMECs. In addition, miR-1224-5p directly targeted ITGA5, and circRSU1 was able to regulate ITGA5 expression via interacting with miR-1224-5p. CircRSU1 could alleviate LPS-induced HPMEC injury by miR-1224-5p/ITGA5 axis, indicating the potential molecular contribution of circRSU1 in sepsis-ALI.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.