Growth, ultrastructural and physiological characteristics of Abelmoschus cytotypes under elevated ozone stress: a study on ploidy-specific responses.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Priyanka Singh, Naushad Ansari, Amit Kumar Mishra, Madhoolika Agrawal, Shashi Bhushan Agrawal
{"title":"Growth, ultrastructural and physiological characteristics of <i>Abelmoschus</i> cytotypes under elevated ozone stress: a study on ploidy-specific responses.","authors":"Priyanka Singh, Naushad Ansari, Amit Kumar Mishra, Madhoolika Agrawal, Shashi Bhushan Agrawal","doi":"10.1071/FP23229","DOIUrl":null,"url":null,"abstract":"<p><p>Tropospheric ozone (O3 ) is a significant abiotic stressor whose rising concentration negatively influences plant growth. Studies related to the differential response of Abelmoschus cytotypes to elevated O3 treatment are scarce and need further exploration to recognise the role of polyploidisation in stress tolerance. In this study, we analysed the changes in growth pattern, ultrastructure, physiology and foliar protein profile occurring under O3 stress in Abelmoschus moschatus (monoploid), Abelmoschus esculentus (diploid) and Abelmoschus caillei (triploid). Our findings showed that higher stomatal conductance in A. moschatus triggered higher O3 intake, causing damage to stomatal cells and photosynthetic pigments. Additionally, it caused a reduction in photosynthetic rates, leading to reduced plant growth, total biomass and economic yield. This O3 -induced toxicity was less in diploid and triploid cytotypes of Abelmoschus . Protein profiling by sodium dodecyl sulpate-polyacrylamide gel electrophoresis showed a significant decrease in the commonly found RuBisCO larger and smaller subunits. The decrease was more prominent in monoploid compared to diploid and triploid. This study provides crucial data for research that aim to enhance plant ability to withstand O3 induced oxidative stress. Our findings may help in developing a tolerant variety through plant breeding techniques, which will be economically more advantageous in reaching the objective of sustainable production at the high O3 levels projected under a climate change scenario.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP23229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Tropospheric ozone (O3 ) is a significant abiotic stressor whose rising concentration negatively influences plant growth. Studies related to the differential response of Abelmoschus cytotypes to elevated O3 treatment are scarce and need further exploration to recognise the role of polyploidisation in stress tolerance. In this study, we analysed the changes in growth pattern, ultrastructure, physiology and foliar protein profile occurring under O3 stress in Abelmoschus moschatus (monoploid), Abelmoschus esculentus (diploid) and Abelmoschus caillei (triploid). Our findings showed that higher stomatal conductance in A. moschatus triggered higher O3 intake, causing damage to stomatal cells and photosynthetic pigments. Additionally, it caused a reduction in photosynthetic rates, leading to reduced plant growth, total biomass and economic yield. This O3 -induced toxicity was less in diploid and triploid cytotypes of Abelmoschus . Protein profiling by sodium dodecyl sulpate-polyacrylamide gel electrophoresis showed a significant decrease in the commonly found RuBisCO larger and smaller subunits. The decrease was more prominent in monoploid compared to diploid and triploid. This study provides crucial data for research that aim to enhance plant ability to withstand O3 induced oxidative stress. Our findings may help in developing a tolerant variety through plant breeding techniques, which will be economically more advantageous in reaching the objective of sustainable production at the high O3 levels projected under a climate change scenario.

高浓度臭氧胁迫下阿贝尔莫斯卡菌细胞型的生长、超微结构和生理特点:关于倍体特异性反应的研究。
对流层臭氧(O3)是一种重要的非生物胁迫因子,其浓度升高会对植物生长产生负面影响。有关阿贝尔莫须有细胞型对高浓度 O3 处理的不同反应的研究很少,需要进一步探讨多倍体化在抗逆性中的作用。在本研究中,我们分析了在O3胁迫下Abelmoschus moschatus(单倍体)、Abelmoschus esculentus(二倍体)和Abelmoschus caillei(三倍体)的生长模式、超微结构、生理机能和叶片蛋白质谱的变化。我们的研究结果表明,毛果芸香科植物较高的气孔导度会导致较高的臭氧摄入量,从而对气孔细胞和光合色素造成损害。此外,它还会降低光合速率,导致植物生长、总生物量和经济产量下降。这种 O3 诱导的毒性在二倍体和三倍体阿贝尔莫希子细胞型中较小。通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳进行的蛋白质分析表明,常见的 RuBisCO 大亚基和小亚基显著减少。与二倍体和三倍体相比,单倍体的下降更为明显。这项研究为旨在提高植物抵御 O3 诱导的氧化胁迫能力的研究提供了重要数据。我们的研究结果可能有助于通过植物育种技术开发出耐受性强的品种,这将更有利于实现在气候变化情况下预计的高臭氧浓度条件下的可持续生产目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信