Predicting probative levels of touch DNA on tapelifts using Diamond™ Nucleic Acid Dye

IF 3.2 2区 医学 Q2 GENETICS & HEREDITY
Isla Madden , Duncan Taylor , Natasha Mitchell , Mariya Goray , Julianne Henry
{"title":"Predicting probative levels of touch DNA on tapelifts using Diamond™ Nucleic Acid Dye","authors":"Isla Madden ,&nbsp;Duncan Taylor ,&nbsp;Natasha Mitchell ,&nbsp;Mariya Goray ,&nbsp;Julianne Henry","doi":"10.1016/j.fsigen.2024.103024","DOIUrl":null,"url":null,"abstract":"<div><p>Tapelifting is a common strategy to recover touch DNA deposits from porous exhibits in forensic DNA casework. However, it is known that only about 30 % of tapelifts submitted for DNA analysis in operational forensic laboratories yield profiles suitable for comparison or upload to a searchable database. A reliable means to identify and remove non-probative tapelifts from the workflow would reduce sample backlogs and provide significant cost savings. We investigated whether the amount of macroscopic or microscopic fluorescence on a tapelift following staining with Diamond Nucleic Acid Dye (DD), determined using a Polilight and Dino Lite microscope respectively, could predict the DNA yield and/or the DNA profiling outcome using controlled (saliva), semi-controlled (finger mark) and uncontrolled (clothing) samples. Both macroscopic and microscopic DD fluorescence could predict DNA yield and profiling outcome for all sample types, however the predictive power deteriorated as the samples became less controlled. For tapelifts of clothing, which are operationally relevant, Polilight fluorescence scores were significantly impacted by clothing fibres and other non-cellular debris and could not be used to identify non-probative samples. The presence of less than 500 cells on a clothing tapelift using microscopic counting of stained corneocytes was identified as a potential threshold for a non-probative DNA profiling outcome. A broader examination of the reliability of this threshold using a casework trial is recommended. Due to the labour intensiveness of microscopic cell counting, and the increased risk of inadvertent contamination, automation of this process using image software in conjunction with artificial neural networks (ANN) should be explored.</p></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497324000188","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Tapelifting is a common strategy to recover touch DNA deposits from porous exhibits in forensic DNA casework. However, it is known that only about 30 % of tapelifts submitted for DNA analysis in operational forensic laboratories yield profiles suitable for comparison or upload to a searchable database. A reliable means to identify and remove non-probative tapelifts from the workflow would reduce sample backlogs and provide significant cost savings. We investigated whether the amount of macroscopic or microscopic fluorescence on a tapelift following staining with Diamond Nucleic Acid Dye (DD), determined using a Polilight and Dino Lite microscope respectively, could predict the DNA yield and/or the DNA profiling outcome using controlled (saliva), semi-controlled (finger mark) and uncontrolled (clothing) samples. Both macroscopic and microscopic DD fluorescence could predict DNA yield and profiling outcome for all sample types, however the predictive power deteriorated as the samples became less controlled. For tapelifts of clothing, which are operationally relevant, Polilight fluorescence scores were significantly impacted by clothing fibres and other non-cellular debris and could not be used to identify non-probative samples. The presence of less than 500 cells on a clothing tapelift using microscopic counting of stained corneocytes was identified as a potential threshold for a non-probative DNA profiling outcome. A broader examination of the reliability of this threshold using a casework trial is recommended. Due to the labour intensiveness of microscopic cell counting, and the increased risk of inadvertent contamination, automation of this process using image software in conjunction with artificial neural networks (ANN) should be explored.

使用 Diamond™ 核酸染料预测触碰 DNA 的概率水平。
在法医 DNA 案例工作中,从多孔物证中提取触碰式 DNA 沉积物是一种常见的策略。然而,据了解,在法医实验室进行的DNA分析中,只有约30%的触碰提取物能产生适合比对或上传到可搜索数据库的图谱。如果有一种可靠的方法可以从工作流程中识别并移除不具证明力的带状移取物,就能减少样本积压并显著节约成本。我们使用 Polilight 和 Dino Lite 显微镜分别测定了金刚石核酸染料(DD)染色后自取物上的宏观或微观荧光量,并使用受控样本(唾液)、半受控样本(指印)和非受控样本(衣物)研究了这些荧光量是否可以预测 DNA 产量和/或 DNA 分析结果。宏观和微观 DD 荧光都能预测所有类型样本的 DNA 产量和分析结果,但随着样本控制程度的降低,预测能力也在下降。对于与操作相关的衣物剥离,极光荧光评分受到衣物纤维和其他非细胞碎片的严重影响,无法用于识别非预测样本。通过对染色角质细胞进行显微计数,发现衣物上存在少于 500 个细胞,这可能是 DNA 分析结果为非证明性的阈值。建议通过个案试验对这一阈值的可靠性进行更广泛的研究。由于显微镜细胞计数的劳动强度大,而且无意污染的风险也会增加,因此应探索使用图像软件结合人工神经网络(ANN)实现这一过程的自动化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
32.30%
发文量
132
审稿时长
11.3 weeks
期刊介绍: Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts. The scope of the journal includes: Forensic applications of human polymorphism. Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies. Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms. Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications. Non-human DNA polymorphisms for crime scene investigation. Population genetics of human polymorphisms of forensic interest. Population data, especially from DNA polymorphisms of interest for the solution of forensic problems. DNA typing methodologies and strategies. Biostatistical methods in forensic genetics. Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches. Standards in forensic genetics. Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards. Quality control. Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies. Criminal DNA databases. Technical, legal and statistical issues. General ethical and legal issues related to forensic genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信