Chuan-Hui Ou;Nguyen Van Toan;Yao-Chuan Tsai;Ioana Voiculescu;Masaya Toda;Takahito Ono
{"title":"A Large-Stroke 3-DOF Micromirror With Novel Lorentz Force-Based Actuators Utilizing Metallic Glass Thin Film","authors":"Chuan-Hui Ou;Nguyen Van Toan;Yao-Chuan Tsai;Ioana Voiculescu;Masaya Toda;Takahito Ono","doi":"10.1109/JMEMS.2023.3337333","DOIUrl":null,"url":null,"abstract":"An electromagnetic tip-tilt-piston micromirror with a large stroke is presented. This research introduced a novel actuation structure, based on a spring made from conductive metallic glass with excellent mechanical properties. For the first time, two functional elements, an electromagnetic actuation element and a mechanical support structure, were successfully integrated into a single-layer spring, made of metallic glass. With this novel actuator, the performance of stroke and angle controllability is remarkably improved. The fabricated device can achieve a \n<inline-formula> <tex-math>$418 ~\\mu \\text{m}$ </tex-math></inline-formula>\n static stroke in upward direction. Furthermore, the tilting angles of the micromirror can be controlled with maximum accuracy of 0.05°/mA. The device is robust and has miniature dimensions, comparable or smaller, than existing electromagnetic micromirror dimensions published in literature. The displacement values of the micromirror are larger, compared to state-of-the–art electromagnetic micromirrors, which usually have strokes under \n<inline-formula> <tex-math>$300 ~\\mu \\text{m}$ </tex-math></inline-formula>\n and do not have angle control mechanism. In spectrometer applications, the micromirror with a large stroke and controllable angle allows spectrometers to achieve higher resolution. These special qualities of the micromirror, will provide efficient, and reliable spatial light modulation required for interferometer applications. [2023-0104]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 1","pages":"46-53"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10347253/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
An electromagnetic tip-tilt-piston micromirror with a large stroke is presented. This research introduced a novel actuation structure, based on a spring made from conductive metallic glass with excellent mechanical properties. For the first time, two functional elements, an electromagnetic actuation element and a mechanical support structure, were successfully integrated into a single-layer spring, made of metallic glass. With this novel actuator, the performance of stroke and angle controllability is remarkably improved. The fabricated device can achieve a
$418 ~\mu \text{m}$
static stroke in upward direction. Furthermore, the tilting angles of the micromirror can be controlled with maximum accuracy of 0.05°/mA. The device is robust and has miniature dimensions, comparable or smaller, than existing electromagnetic micromirror dimensions published in literature. The displacement values of the micromirror are larger, compared to state-of-the–art electromagnetic micromirrors, which usually have strokes under
$300 ~\mu \text{m}$
and do not have angle control mechanism. In spectrometer applications, the micromirror with a large stroke and controllable angle allows spectrometers to achieve higher resolution. These special qualities of the micromirror, will provide efficient, and reliable spatial light modulation required for interferometer applications. [2023-0104]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.