Meshless variational method applied to Mixed-mode dynamic stress intensity factors

J.C. Wen , L. Ning , C.G. Zhang , P.H. Wen , M.H. Aliabadi
{"title":"Meshless variational method applied to Mixed-mode dynamic stress intensity factors","authors":"J.C. Wen ,&nbsp;L. Ning ,&nbsp;C.G. Zhang ,&nbsp;P.H. Wen ,&nbsp;M.H. Aliabadi","doi":"10.1016/j.prostr.2023.12.064","DOIUrl":null,"url":null,"abstract":"<div><p>For linear elastic fracture mechanics, the variational technique with a path independent contour integral is used to determine the stress intensity factors (SIFs) for functionally graded materials (FGMs) under static and dynamic loads in this work. Utilizing the interpolation of the Chebyshev polynomials and the finite block method (FBM) to deal with two-dimensional fracture problems. The Quadratic form block is transformed from Cartesian coordinates to normalized coordinates with 8 nodes by technology of mapping. The new equilibrium equations in terms of displacements are derived in a normalized coordinate system. All coefficients of the Chebyshev polynomials are determined by considering the governing equations, boundary conditions and connecting conditions of the two blocks. The accuracy and convergence of the FBM with Chebyshev polynomials are illustrated through several examples and comparison has been implemented with analytical solutions and different numerical approaches.</p></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452321623007643/pdf?md5=5cac2025bfba20189f04b7e719fa4151&pid=1-s2.0-S2452321623007643-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321623007643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For linear elastic fracture mechanics, the variational technique with a path independent contour integral is used to determine the stress intensity factors (SIFs) for functionally graded materials (FGMs) under static and dynamic loads in this work. Utilizing the interpolation of the Chebyshev polynomials and the finite block method (FBM) to deal with two-dimensional fracture problems. The Quadratic form block is transformed from Cartesian coordinates to normalized coordinates with 8 nodes by technology of mapping. The new equilibrium equations in terms of displacements are derived in a normalized coordinate system. All coefficients of the Chebyshev polynomials are determined by considering the governing equations, boundary conditions and connecting conditions of the two blocks. The accuracy and convergence of the FBM with Chebyshev polynomials are illustrated through several examples and comparison has been implemented with analytical solutions and different numerical approaches.

应用于混合模式动态应力强度因子的无网格变分法
对于线性弹性断裂力学,本研究采用与路径无关的等值线积分的变分技术来确定功能分级材料(FGM)在静态和动态载荷下的应力强度因子(SIF)。利用切比雪夫多项式插值法和有限块法(FBM)处理二维断裂问题。通过映射技术,将四元形式块从直角坐标转换为具有 8 个节点的归一化坐标。在归一化坐标系中导出了以位移为单位的新平衡方程。切比雪夫多项式的所有系数都是通过考虑两个区块的控制方程、边界条件和连接条件确定的。通过几个例子说明了使用切比雪夫多项式的 FBM 的准确性和收敛性,并与分析解法和不同的数值方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信