Aaron Carass , Danielle Greenman , Blake E. Dewey , Peter A. Calabresi , Jerry L. Prince , Dzung L. Pham
{"title":"Image harmonization improves consistency of intra-rater delineations of MS lesions in heterogeneous MRI","authors":"Aaron Carass , Danielle Greenman , Blake E. Dewey , Peter A. Calabresi , Jerry L. Prince , Dzung L. Pham","doi":"10.1016/j.ynirp.2024.100195","DOIUrl":null,"url":null,"abstract":"<div><p>Clinical magnetic resonance images (MRIs) lack a standard intensity scale due to differences in scanner hardware and the pulse sequences used to acquire the images. When MRIs are used for quantification, as in the evaluation of white matter lesions (WMLs) in multiple sclerosis, this lack of intensity standardization becomes a critical problem affecting both the staging and tracking of the disease and its treatment. This paper presents a study of harmonization on WML segmentation consistency, which is evaluated using an object detection classification scheme that incorporates manual delineations from both the original and harmonized MRIs. A cohort of ten people scanned on two different imaging platforms was studied. An expert rater, blinded to the image source, manually delineated WMLs on images from both scanners before and after harmonization. It was found that there is closer agreement in both global and per-lesion WML volume and spatial distribution after harmonization, demonstrating the importance of image harmonization prior to the creation of manual delineations. These results could lead to better truth models in both the development and evaluation of automated lesion segmentation algorithms.</p></div>","PeriodicalId":74277,"journal":{"name":"Neuroimage. Reports","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666956024000011/pdfft?md5=b2927579d2bc3da98e6ecc6c594b70c0&pid=1-s2.0-S2666956024000011-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage. Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666956024000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical magnetic resonance images (MRIs) lack a standard intensity scale due to differences in scanner hardware and the pulse sequences used to acquire the images. When MRIs are used for quantification, as in the evaluation of white matter lesions (WMLs) in multiple sclerosis, this lack of intensity standardization becomes a critical problem affecting both the staging and tracking of the disease and its treatment. This paper presents a study of harmonization on WML segmentation consistency, which is evaluated using an object detection classification scheme that incorporates manual delineations from both the original and harmonized MRIs. A cohort of ten people scanned on two different imaging platforms was studied. An expert rater, blinded to the image source, manually delineated WMLs on images from both scanners before and after harmonization. It was found that there is closer agreement in both global and per-lesion WML volume and spatial distribution after harmonization, demonstrating the importance of image harmonization prior to the creation of manual delineations. These results could lead to better truth models in both the development and evaluation of automated lesion segmentation algorithms.