Yun Meng, Ye Cai, Mengyao Cui, Yuhang Xu, Long Wu, Xiang Li, Xiaoqin Chu
{"title":"Solid self-microemulsifying drug delivery system (S-SMEDDS) prepared by spray drying to improve the oral bioavailability of cinnamaldehyde (CA).","authors":"Yun Meng, Ye Cai, Mengyao Cui, Yuhang Xu, Long Wu, Xiang Li, Xiaoqin Chu","doi":"10.1080/10837450.2024.2312851","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to prepare a solid self-microemulsifying drug delivery system (S-SMEDDS) of cinnamaldehyde (CA) by spray drying technique to improve the oral bioavailability of CA. The preparation of CA S-SMEDDS with maltodextrin as the solid carrier, a core-wall material mass ratio of 1:1, a solid content of 20% (w/v), an inlet air temperature of 150 °C, an injection speed of 5.2 mL/min, and an atomization pressure of 0.1 MPa was determined by using the encapsulation rate as the index of investigation. Differential scanning calorimetry (DSC) revealed the possibility of CA being encapsulated in S-SMEDDS in an amorphous form. The <i>in-vitro</i> release showed that the total amount of CA released by S-SMEDDS was approximately 1.3 times higher than that of the CA suspension. Pharmacokinetic results showed that the relative oral bioavailability of CA S-SMEDDS was also increased to 1.6-fold compared to CA suspension. Additionally, we explored the mechanism of CA uptake and transport of lipid-soluble drugs CA by S-SMEDDS in a Caco-2/HT29 cell co-culture system for the first time. The results showed that CA S-SMEDDS uptake on the co-culture model was mainly an energy-dependent endocytosis mechanism, including lattice protein-mediated endocytosis and vesicle-mediated endocytosis. Transport experiments showed that CA S-SMEDDS significantly increased the permeability of CA in this model. These findings suggested that CA S-SMEDDS is an effective oral solid dosage form for increasing the oral bioavailability of lipid-soluble drug CA.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"112-122"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2312851","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to prepare a solid self-microemulsifying drug delivery system (S-SMEDDS) of cinnamaldehyde (CA) by spray drying technique to improve the oral bioavailability of CA. The preparation of CA S-SMEDDS with maltodextrin as the solid carrier, a core-wall material mass ratio of 1:1, a solid content of 20% (w/v), an inlet air temperature of 150 °C, an injection speed of 5.2 mL/min, and an atomization pressure of 0.1 MPa was determined by using the encapsulation rate as the index of investigation. Differential scanning calorimetry (DSC) revealed the possibility of CA being encapsulated in S-SMEDDS in an amorphous form. The in-vitro release showed that the total amount of CA released by S-SMEDDS was approximately 1.3 times higher than that of the CA suspension. Pharmacokinetic results showed that the relative oral bioavailability of CA S-SMEDDS was also increased to 1.6-fold compared to CA suspension. Additionally, we explored the mechanism of CA uptake and transport of lipid-soluble drugs CA by S-SMEDDS in a Caco-2/HT29 cell co-culture system for the first time. The results showed that CA S-SMEDDS uptake on the co-culture model was mainly an energy-dependent endocytosis mechanism, including lattice protein-mediated endocytosis and vesicle-mediated endocytosis. Transport experiments showed that CA S-SMEDDS significantly increased the permeability of CA in this model. These findings suggested that CA S-SMEDDS is an effective oral solid dosage form for increasing the oral bioavailability of lipid-soluble drug CA.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.