Extemporaneous Compounding of Low-strength Aspirin Capsules for Desensitization Protocols.

Q4 Medicine
Carly Messenger, Bailey Soper, Kara Cutaia, Fang Zhao
{"title":"Extemporaneous Compounding of Low-strength Aspirin Capsules for Desensitization Protocols.","authors":"Carly Messenger, Bailey Soper, Kara Cutaia, Fang Zhao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Aspirin is a non-steroidal, anti-inflammatory drug used for a range of indications. For patients with aspirin hypersensitivities, a desensitization procedure may be prescribed, and the initial low doses of <81 mg need to be provided by compounded preparations. Compounding with aspirin is associated with stability challenges due to its poor chemical stability. Additionally, low-strength preparations often exhibit dosage accuracy and uniformity issues. This study was designed to assess the feasibility of compounding low-strength aspirin capsules for the use in desensitization protocols. Aspirin capsules of 40-mg, 10-mg, 3-mg, and 1-mg strengths were prepared by manual filling of dry powders. Formulations were kept as simple as possible for ease of compounding, and the ingredients and compounding procedures were carefully selected to minimize the moisture content and to optimize the dosage accuracy. For the 40-mg and 10-mg capsules, two formulations were tested, using pure drug or crushed tablet powder. For the 3-mg and 1-mg capsules, only one formulation was tested, using a 5% mixture of pure drug and cellulose. All formulations were filled into hydroxypropyl methylcellulose capsule shells and stored at room temperature for 90 days. A  stability indicating, high-performance liquid chromatography method was used to analyze the quality of the capsules. The initial potency results of all capsule formulations were within 100% to 105% of the label claim, and the standard deviation was <3% for all formulations except the 1-mg strength (7%). The use of crushed tablet powder over pure drug powder appeared to reduce the potency variability, probably due to the larger fill weight per capsule. Upon storage at room temperature, the 40-mg and 10-mg formulations retained >90% of the label claim for up to 90 days, but the 3-mg and 1-mg formulations retained >90% of the label claim for up to only 31 days. Low-strength aspirin capsules were prepared successfully by compounding with a beyond-use date of at least 31 days at room temperature. However, the overall trend confirmed the challenges of achieving dosage uniformity and aspirin stability at 3-mg and 1-mg strengths. For general application in compounding pharmacies, trial batches are recommended with proper analytical testing.</p>","PeriodicalId":14381,"journal":{"name":"International journal of pharmaceutical compounding","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pharmaceutical compounding","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Aspirin is a non-steroidal, anti-inflammatory drug used for a range of indications. For patients with aspirin hypersensitivities, a desensitization procedure may be prescribed, and the initial low doses of <81 mg need to be provided by compounded preparations. Compounding with aspirin is associated with stability challenges due to its poor chemical stability. Additionally, low-strength preparations often exhibit dosage accuracy and uniformity issues. This study was designed to assess the feasibility of compounding low-strength aspirin capsules for the use in desensitization protocols. Aspirin capsules of 40-mg, 10-mg, 3-mg, and 1-mg strengths were prepared by manual filling of dry powders. Formulations were kept as simple as possible for ease of compounding, and the ingredients and compounding procedures were carefully selected to minimize the moisture content and to optimize the dosage accuracy. For the 40-mg and 10-mg capsules, two formulations were tested, using pure drug or crushed tablet powder. For the 3-mg and 1-mg capsules, only one formulation was tested, using a 5% mixture of pure drug and cellulose. All formulations were filled into hydroxypropyl methylcellulose capsule shells and stored at room temperature for 90 days. A  stability indicating, high-performance liquid chromatography method was used to analyze the quality of the capsules. The initial potency results of all capsule formulations were within 100% to 105% of the label claim, and the standard deviation was <3% for all formulations except the 1-mg strength (7%). The use of crushed tablet powder over pure drug powder appeared to reduce the potency variability, probably due to the larger fill weight per capsule. Upon storage at room temperature, the 40-mg and 10-mg formulations retained >90% of the label claim for up to 90 days, but the 3-mg and 1-mg formulations retained >90% of the label claim for up to only 31 days. Low-strength aspirin capsules were prepared successfully by compounding with a beyond-use date of at least 31 days at room temperature. However, the overall trend confirmed the challenges of achieving dosage uniformity and aspirin stability at 3-mg and 1-mg strengths. For general application in compounding pharmacies, trial batches are recommended with proper analytical testing.

为脱敏方案临时配制低强度阿司匹林胶囊。
阿司匹林是一种非甾体抗炎药物,可用于多种适应症。对于阿司匹林过敏的患者,可采用脱敏程序,最初的小剂量阿司匹林可在 90 天内达到标签要求的 90%,但 3 毫克和 1 毫克制剂只能在 31 天内达到标签要求的 90%。低浓度阿司匹林胶囊通过复方制剂制备成功,在室温下超过使用期限至少 31 天。不过,总体趋势证实了在 3 毫克和 1 毫克两种强度下实现剂量均匀性和阿司匹林稳定性所面临的挑战。对于复方药房的一般应用,建议在进行适当的分析测试后进行试制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
62
期刊介绍: The International Journal of Pharmaceutical Compounding (IJPC) is a bi-monthly, scientific and professional journal emphasizing quality pharmaceutical compounding. IJPC is the only publication that covers pharmaceutical compounding topics relevant and necessary to empower pharmacists to meet the needs of today"s patients. No other publication features hands-on, how-to compounding techniques or the information that contemporary pharmacists need to provide individualized care.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信