Organic Input to Titan's Subsurface Ocean Through Impact Cratering.

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Astrobiology Pub Date : 2024-02-01 Epub Date: 2024-02-02 DOI:10.1089/ast.2023.0055
Catherine Neish, Michael J Malaska, Christophe Sotin, Rosaly M C Lopes, Conor A Nixon, Antonin Affholder, Audrey Chatain, Charles Cockell, Kendra K Farnsworth, Peter M Higgins, Kelly E Miller, Krista M Soderlund
{"title":"Organic Input to Titan's Subsurface Ocean Through Impact Cratering.","authors":"Catherine Neish, Michael J Malaska, Christophe Sotin, Rosaly M C Lopes, Conor A Nixon, Antonin Affholder, Audrey Chatain, Charles Cockell, Kendra K Farnsworth, Peter M Higgins, Kelly E Miller, Krista M Soderlund","doi":"10.1089/ast.2023.0055","DOIUrl":null,"url":null,"abstract":"<p><p>Titan has an organic-rich atmosphere and surface with a subsurface liquid water ocean that may represent a habitable environment. In this work, we determined the amount of organic material that can be delivered from Titan's surface to its ocean through impact cratering. We assumed that Titan's craters produce impact melt deposits composed of liquid water that can founder in its lower-density ice crust and estimated the amount of organic molecules that could be incorporated into these melt lenses. We used known yields for HCN and Titan haze hydrolysis to determine the amount of glycine produced in the melt lenses and found a range of possible flux rates of glycine from the surface to the subsurface ocean. These ranged from 0 to 10<sup>11</sup> mol/Gyr for HCN hydrolysis and from 0 to 10<sup>14</sup> mol/Gyr for haze hydrolysis. These fluxes suggest an upper limit for biomass productivity of ∼10<sup>3</sup> kgC/year from a glycine fermentation metabolism. This upper limit is significantly less than recent estimates of the hypothetical biomass production supported by Enceladus's subsurface ocean. Unless biologically available compounds can be sourced from Titan's interior, or be delivered from the surface by other mechanisms, our calculations suggest that even the most organic-rich ocean world in the Solar System may not be able to support a large biosphere.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2023.0055","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Titan has an organic-rich atmosphere and surface with a subsurface liquid water ocean that may represent a habitable environment. In this work, we determined the amount of organic material that can be delivered from Titan's surface to its ocean through impact cratering. We assumed that Titan's craters produce impact melt deposits composed of liquid water that can founder in its lower-density ice crust and estimated the amount of organic molecules that could be incorporated into these melt lenses. We used known yields for HCN and Titan haze hydrolysis to determine the amount of glycine produced in the melt lenses and found a range of possible flux rates of glycine from the surface to the subsurface ocean. These ranged from 0 to 1011 mol/Gyr for HCN hydrolysis and from 0 to 1014 mol/Gyr for haze hydrolysis. These fluxes suggest an upper limit for biomass productivity of ∼103 kgC/year from a glycine fermentation metabolism. This upper limit is significantly less than recent estimates of the hypothetical biomass production supported by Enceladus's subsurface ocean. Unless biologically available compounds can be sourced from Titan's interior, or be delivered from the surface by other mechanisms, our calculations suggest that even the most organic-rich ocean world in the Solar System may not be able to support a large biosphere.

通过撞击陨石坑向土卫六地表下海洋输入有机物。
土卫六有一个富含有机物的大气层和地表,地表下有一个液态水海洋,可能代表着一个宜居的环境。在这项工作中,我们确定了通过撞击陨石坑从土卫六表面向其海洋输送的有机物质的数量。我们假定土卫六的陨石坑会产生由液态水组成的撞击熔融沉积物,这些液态水可以在密度较低的冰壳中形成,并估算了这些熔融透镜中可能含有的有机分子数量。我们利用已知的 HCN 产量和泰坦雾水解来确定熔融透镜中产生的甘氨酸数量,并发现了甘氨酸从地表到地表下海洋的可能通量率范围。HCN水解作用的通量范围为0至1011摩尔/年,阴霾水解作用的通量范围为0至1014摩尔/年。这些通量表明,甘氨酸发酵代谢的生物量生产率上限为 103 kgC/年。这一上限大大低于最近对 "恩克拉多斯 "表面下海洋支持的假设生物量生产的估计。除非可以从土卫六内部获得生物可用的化合物,或者通过其他机制从表面输送,否则我们的计算表明,即使是太阳系中有机物最丰富的海洋世界,也可能无法支持一个大型生物圈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信