Rui Ma , Zhijie Chen , Weihang Xu , Ran Yu , Yichu Zhang , Fan Chen , Xiaoming Peng , Bing-Jie Ni , Jin Qian
{"title":"Fe-MOFs/CuS nanocomposite-mediated peroxymonosulfate activation for tetracycline degradation: Boosted dual redox cycles","authors":"Rui Ma , Zhijie Chen , Weihang Xu , Ran Yu , Yichu Zhang , Fan Chen , Xiaoming Peng , Bing-Jie Ni , Jin Qian","doi":"10.1016/j.jclepro.2024.140885","DOIUrl":null,"url":null,"abstract":"<div><p>Engineering dual redox centers in catalysts for peroxymonosulfate (PMS) activation emerges an efficient strategy to achieve high pollutant degradation performance. In this study, MIL-88 A (Fe) supported copper sulphide (MIL-88 A (Fe)@CuS) was developed as a PMS activator to degrade aqueous tetracycline (TC). MIL-88 A (Fe)@CuS showed high catalytic performance towards PMS activation, and a TC degradation rate of 91.0 % (20 mg/L) could be achieved within 40 min, with a <em>k</em> value of 0.3921min<sup>−1</sup>. The TC removal rate of the MIL-88 A (Fe)@CuS system was 1.55 and 1.12 times higher than that of MIL-88 A (Fe) + PMS and CuS + PMS systems, respectively. MIL-88 A (Fe)@CuS also possessed excellent stability in terms of good activity maintenance, low metal leaching, and stable structure. In addition, the MIL-88 A (Fe)@CuS + PMS system exhibited good degradation performance towards different antibiotics in real water metrics. In TC degradation, reactive oxygen species (ROS) include SO<sub>4</sub><sup><strong>•</strong>-</sup>, •OH, O<sub>2</sub><sup>•-</sup> and <sup>1</sup>O<sub>2</sub> are involved, and SO<sub>4</sub><sup><strong>•</strong>-</sup> served as the main species. The synergistic effect of both Cu and Fe cycles for PMS activation was confirmed, and S benefited the rapid Cu<sup>2+</sup>/Cu<sup>+</sup> and Fe<sup>3+</sup>/Fe<sup>2+</sup> cycling. Furthermore, three potential TC degradation pathways have been identified based on experimental and computational studies. Overall, this work presents a feasible approach for developing efficient composite catalysts for advanced oxidation processes with dual redox cycles.</p></div>","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"442 ","pages":"Article 140885"},"PeriodicalIF":9.7000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959652624003329","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Engineering dual redox centers in catalysts for peroxymonosulfate (PMS) activation emerges an efficient strategy to achieve high pollutant degradation performance. In this study, MIL-88 A (Fe) supported copper sulphide (MIL-88 A (Fe)@CuS) was developed as a PMS activator to degrade aqueous tetracycline (TC). MIL-88 A (Fe)@CuS showed high catalytic performance towards PMS activation, and a TC degradation rate of 91.0 % (20 mg/L) could be achieved within 40 min, with a k value of 0.3921min−1. The TC removal rate of the MIL-88 A (Fe)@CuS system was 1.55 and 1.12 times higher than that of MIL-88 A (Fe) + PMS and CuS + PMS systems, respectively. MIL-88 A (Fe)@CuS also possessed excellent stability in terms of good activity maintenance, low metal leaching, and stable structure. In addition, the MIL-88 A (Fe)@CuS + PMS system exhibited good degradation performance towards different antibiotics in real water metrics. In TC degradation, reactive oxygen species (ROS) include SO4•-, •OH, O2•- and 1O2 are involved, and SO4•- served as the main species. The synergistic effect of both Cu and Fe cycles for PMS activation was confirmed, and S benefited the rapid Cu2+/Cu+ and Fe3+/Fe2+ cycling. Furthermore, three potential TC degradation pathways have been identified based on experimental and computational studies. Overall, this work presents a feasible approach for developing efficient composite catalysts for advanced oxidation processes with dual redox cycles.
期刊介绍:
The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.