{"title":"Progress and prospects in two-dimensional magnetism of van der Waals materials","authors":"Youngjun Ahn, Xiaoyu Guo, Suhan Son, Zeliang Sun, Liuyan Zhao","doi":"10.1016/j.pquantelec.2024.100498","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional (2D) magnetism in van der Waals (vdW) atomic crystals and moiré superlattices has emerged as a topic of tremendous interest in the fields of condensed matter physics and materials science within the past half-decade since its first experimental discovery in 2016–2017. It has not only served as a powerful platform for investigating phase transitions in the 2D limit and exploring new phases of matter, but also provided new opportunities for applications in microelectronics, spintronics, magnonics, optomagnetics, and so on. Despite the flourish developments in 2D magnetism over this short period of time, further efforts are welcome in multiple forefronts of 2D magnetism research for achieving the ultimate goal of routinely implementing 2D magnets as quantum electronic components. In this review article, we will start with basic concepts and properties of 2D magnetism, followed by a brief overview of historical efforts in 2D magnetism research and then a comprehensive review of vdW material-based 2D magnetism. We will conclude with discussions on potential future research directions for this growing field of 2D vdW magnetism.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"93 ","pages":"Article 100498"},"PeriodicalIF":7.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672724000016","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) magnetism in van der Waals (vdW) atomic crystals and moiré superlattices has emerged as a topic of tremendous interest in the fields of condensed matter physics and materials science within the past half-decade since its first experimental discovery in 2016–2017. It has not only served as a powerful platform for investigating phase transitions in the 2D limit and exploring new phases of matter, but also provided new opportunities for applications in microelectronics, spintronics, magnonics, optomagnetics, and so on. Despite the flourish developments in 2D magnetism over this short period of time, further efforts are welcome in multiple forefronts of 2D magnetism research for achieving the ultimate goal of routinely implementing 2D magnets as quantum electronic components. In this review article, we will start with basic concepts and properties of 2D magnetism, followed by a brief overview of historical efforts in 2D magnetism research and then a comprehensive review of vdW material-based 2D magnetism. We will conclude with discussions on potential future research directions for this growing field of 2D vdW magnetism.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.