RGB-D Based Visual SLAM Algorithm for Indoor Crowd Environment

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jianfeng Li, Juan Dai, Zhong Su, Cui Zhu
{"title":"RGB-D Based Visual SLAM Algorithm for Indoor Crowd Environment","authors":"Jianfeng Li, Juan Dai, Zhong Su, Cui Zhu","doi":"10.1007/s10846-023-02046-3","DOIUrl":null,"url":null,"abstract":"<p>Most current research on dynamic visual Simultaneous Localization and Mapping (SLAM) systems focuses on scenes where static objects occupy most of the environment. However, in densely populated indoor environments, the movement of the crowd can lead to the loss of feature information, thereby diminishing the system’s robustness and accuracy. This paper proposes a visual SLAM algorithm for dense crowd environments based on a combination of the ORB-SLAM2 framework and RGB-D cameras. Firstly, we introduced a dedicated target detection network thread and improved the performance of the target detection network, enhancing its detection coverage in crowded environments, resulting in a 41.5% increase in average accuracy. Additionally, we found that some feature points other than humans in the detection box were mistakenly deleted. Therefore, we proposed an algorithm based on standard deviation fitting to effectively filter out the features. Finally, our system is evaluated on the TUM and Bonn RGB-D dynamic datasets and compared with ORB-SLAM2 and other state-of-the-art visual dynamic SLAM methods. The results indicate that our system’s pose estimation error is reduced by at least 93.60% and 97.11% compared to ORB-SLAM2 in high dynamic environments and the Bonn RGB-D dynamic dataset, respectively. Our method demonstrates comparable performance compared to other recent visual dynamic SLAM methods.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-023-02046-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Most current research on dynamic visual Simultaneous Localization and Mapping (SLAM) systems focuses on scenes where static objects occupy most of the environment. However, in densely populated indoor environments, the movement of the crowd can lead to the loss of feature information, thereby diminishing the system’s robustness and accuracy. This paper proposes a visual SLAM algorithm for dense crowd environments based on a combination of the ORB-SLAM2 framework and RGB-D cameras. Firstly, we introduced a dedicated target detection network thread and improved the performance of the target detection network, enhancing its detection coverage in crowded environments, resulting in a 41.5% increase in average accuracy. Additionally, we found that some feature points other than humans in the detection box were mistakenly deleted. Therefore, we proposed an algorithm based on standard deviation fitting to effectively filter out the features. Finally, our system is evaluated on the TUM and Bonn RGB-D dynamic datasets and compared with ORB-SLAM2 and other state-of-the-art visual dynamic SLAM methods. The results indicate that our system’s pose estimation error is reduced by at least 93.60% and 97.11% compared to ORB-SLAM2 in high dynamic environments and the Bonn RGB-D dynamic dataset, respectively. Our method demonstrates comparable performance compared to other recent visual dynamic SLAM methods.

基于 RGB-D 的室内人群环境视觉 SLAM 算法
目前对动态视觉同步定位与绘图(SLAM)系统的研究大多集中在静态物体占据大部分环境的场景上。然而,在人口密集的室内环境中,人群的移动会导致特征信息的丢失,从而降低系统的鲁棒性和准确性。本文结合 ORB-SLAM2 框架和 RGB-D 摄像机,提出了一种适用于密集人群环境的视觉 SLAM 算法。首先,我们引入了专用的目标检测网络线程,并改进了目标检测网络的性能,提高了其在拥挤环境中的检测覆盖率,使平均精度提高了 41.5%。此外,我们还发现检测框中一些非人类的特征点被误删。因此,我们提出了一种基于标准偏差拟合的算法,以有效过滤掉这些特征点。最后,我们的系统在 TUM 和 Bonn RGB-D 动态数据集上进行了评估,并与 ORB-SLAM2 和其他最先进的视觉动态 SLAM 方法进行了比较。结果表明,在高动态环境和波恩 RGB-D 动态数据集中,与 ORB-SLAM2 相比,我们系统的姿态估计误差分别减少了至少 93.60% 和 97.11%。与其他最新的视觉动态 SLAM 方法相比,我们的方法性能相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent & Robotic Systems
Journal of Intelligent & Robotic Systems 工程技术-机器人学
CiteScore
7.00
自引率
9.10%
发文量
219
审稿时长
6 months
期刊介绍: The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization. On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc. On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信