Quantum-dot Cellular Automata Placement and Routing with Hierarchical Algorithm

IF 2.9 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Bing Zhang , Fei Peng , Gaisheng Li , Yangshuai Li , Guangjun Xie
{"title":"Quantum-dot Cellular Automata Placement and Routing with Hierarchical Algorithm","authors":"Bing Zhang ,&nbsp;Fei Peng ,&nbsp;Gaisheng Li ,&nbsp;Yangshuai Li ,&nbsp;Guangjun Xie","doi":"10.1016/j.nancom.2024.100495","DOIUrl":null,"url":null,"abstract":"<div><p>To meet the needs of the market launch, placement and routing(P&amp;R) algorithms for conventional circuits have started to adopt a hierarchical design, divide and conquer philosophy for the layout of VLSI circuits. Quantum-dot cellular automata (QCA) circuits are considered a solution to overcome the limitations of Moore’s Law. However, the current automated design of QCA circuits is still in its preliminary stages. This paper uses a hierarchical structure, which borrows from traditional circuits that should be laid out in large-scale circuits, to hierarchically process QCA circuits, laying them out layer by layer while using the A* algorithm for wiring to find feasible solutions. The algorithm is implemented using the C++ programming language, and simulation results verify the correctness of the algorithm.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"39 ","pages":"Article 100495"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778924000012","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To meet the needs of the market launch, placement and routing(P&R) algorithms for conventional circuits have started to adopt a hierarchical design, divide and conquer philosophy for the layout of VLSI circuits. Quantum-dot cellular automata (QCA) circuits are considered a solution to overcome the limitations of Moore’s Law. However, the current automated design of QCA circuits is still in its preliminary stages. This paper uses a hierarchical structure, which borrows from traditional circuits that should be laid out in large-scale circuits, to hierarchically process QCA circuits, laying them out layer by layer while using the A* algorithm for wiring to find feasible solutions. The algorithm is implemented using the C++ programming language, and simulation results verify the correctness of the algorithm.

采用分层算法的量子点蜂窝自动机安置和路由选择
为了满足市场启动的需要,传统电路的布局和布线(P&R)算法开始采用分层设计、分而治之的理念来布局超大规模集成电路。量子点蜂窝自动机(QCA)电路被认为是克服摩尔定律限制的一种解决方案。然而,目前 QCA 电路的自动化设计仍处于初级阶段。本文借鉴大规模电路中应布局的传统电路,采用分层结构对 QCA 电路进行分层处理,逐层布局,同时使用 A* 算法布线,以找到可行的解决方案。该算法使用 C++ 编程语言实现,仿真结果验证了算法的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Communication Networks
Nano Communication Networks Mathematics-Applied Mathematics
CiteScore
6.00
自引率
6.90%
发文量
14
期刊介绍: The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published. Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信