Luciano Junqueira Costa, Vinícius Resende de Castro, Paulo Fernando Trugilho, Artur Queiroz Lana, Aylson Costa Oliveira, Michael Douglas Roque Lima, Thiago de Paula Protásio, Angélica de Cássia Oliveira Carneiro, Marcos Oliveira de Paula
{"title":"Physical–chemical properties and hygroscopicity of Brazilian metallurgical charcoal","authors":"Luciano Junqueira Costa, Vinícius Resende de Castro, Paulo Fernando Trugilho, Artur Queiroz Lana, Aylson Costa Oliveira, Michael Douglas Roque Lima, Thiago de Paula Protásio, Angélica de Cássia Oliveira Carneiro, Marcos Oliveira de Paula","doi":"10.1007/s00226-024-01529-2","DOIUrl":null,"url":null,"abstract":"<div><p>Wood is exposed to different atmospheric conditions in the production of charcoal due to the occurrence of rainfall and variation in relative humidity. However, there is a lack of scientific information related to charcoal hygroscopicity and desorption capacity depending on water content. Thus, in the present study, we analyzed the influence of carbonization temperature in brick kilns on the hygroscopic capacity of charcoal from a 7-year-old <i>Eucalyptus</i> sp. wood. Charcoal was produced at final temperatures of 340, 380, 420, and 460 °C. Raman spectroscopy, Fourier-transform infrared absorption spectroscopy, scanning electron microscopy, and surface area measurement were performed to identify structural changes in charcoal. The charcoal samples were exposed to six different saline solutions to simulate the relative humidity of the environment, ranging from 33 to 98%, for the determination of the moisture adsorption capacity. The charcoal surface area values ranged from 7.9 (340 °C) to 12.3 m<sup>2</sup> g<sup>−1</sup> (460 °C). Charcoal porosity increased by 14.4% with increasing temperature. The adsorption capacity decreased with the rising final carbonization temperature. An average reduction of 9.9% between the moisture adsorbed by the charcoal samples produced at 340 °C and 460 °C was observed. The increase in surface area and porosity of charcoal as a function of temperature resulted in the loss of environmental moisture adsorption capacity due to the removal of carboxyl and hydroxyl groups in the temperature range analyzed. Physical mechanisms were more relevant in the water–charcoal relationship, which can directly influence the drying process of the bioreducer in stockyards.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 2","pages":"503 - 532"},"PeriodicalIF":3.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01529-2","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Wood is exposed to different atmospheric conditions in the production of charcoal due to the occurrence of rainfall and variation in relative humidity. However, there is a lack of scientific information related to charcoal hygroscopicity and desorption capacity depending on water content. Thus, in the present study, we analyzed the influence of carbonization temperature in brick kilns on the hygroscopic capacity of charcoal from a 7-year-old Eucalyptus sp. wood. Charcoal was produced at final temperatures of 340, 380, 420, and 460 °C. Raman spectroscopy, Fourier-transform infrared absorption spectroscopy, scanning electron microscopy, and surface area measurement were performed to identify structural changes in charcoal. The charcoal samples were exposed to six different saline solutions to simulate the relative humidity of the environment, ranging from 33 to 98%, for the determination of the moisture adsorption capacity. The charcoal surface area values ranged from 7.9 (340 °C) to 12.3 m2 g−1 (460 °C). Charcoal porosity increased by 14.4% with increasing temperature. The adsorption capacity decreased with the rising final carbonization temperature. An average reduction of 9.9% between the moisture adsorbed by the charcoal samples produced at 340 °C and 460 °C was observed. The increase in surface area and porosity of charcoal as a function of temperature resulted in the loss of environmental moisture adsorption capacity due to the removal of carboxyl and hydroxyl groups in the temperature range analyzed. Physical mechanisms were more relevant in the water–charcoal relationship, which can directly influence the drying process of the bioreducer in stockyards.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.