2D Voigt Boussinesq Equations

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Mihaela Ignatova
{"title":"2D Voigt Boussinesq Equations","authors":"Mihaela Ignatova","doi":"10.1007/s00021-023-00849-w","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a critical conservative Voigt regularization of the 2D incompressible Boussinesq system on the torus. We prove the existence and uniqueness of global smooth solutions and their convergence in the smooth regime to the Boussinesq solution when the regularizations are removed. We also consider a range of mixed (subcritical–supercritical) Voigt regularizations for which we prove the existence of global smooth solutions.\n</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00849-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a critical conservative Voigt regularization of the 2D incompressible Boussinesq system on the torus. We prove the existence and uniqueness of global smooth solutions and their convergence in the smooth regime to the Boussinesq solution when the regularizations are removed. We also consider a range of mixed (subcritical–supercritical) Voigt regularizations for which we prove the existence of global smooth solutions.

二维 Voigt 布森斯方程
我们考虑对环面上的二维不可压缩布森斯克系统进行临界保守 Voigt 正则化。我们证明了全局光滑解的存在性和唯一性,以及在去除正则化后,它们在光滑状态下对布西内斯克解的收敛性。我们还考虑了一系列混合(亚临界-超临界)Voigt 正则化,并证明了全局平稳解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信