求助PDF
{"title":"Congruences Involving Special Sums of Triple Reciprocals","authors":"Zhongyan Shen","doi":"10.1155/2024/8445635","DOIUrl":null,"url":null,"abstract":"Define the sums of triple reciprocals <span><svg height=\"15.5493pt\" style=\"vertical-align:-5.86298pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.68632 35.781 15.5493\" width=\"35.781pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,8.996,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,13.494,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,20.02,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,28.15,0)\"></path></g></svg><span></span><svg height=\"15.5493pt\" style=\"vertical-align:-5.86298pt\" version=\"1.1\" viewbox=\"39.363183799999995 -9.68632 54.435 15.5493\" width=\"54.435pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,39.413,.007)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,49.2,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,51.748,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,57.308,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,61.222,3.466)\"><use xlink:href=\"#g54-36\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,66.782,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,71.414,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,76.974,3.466)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,82.252,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,88.492,0)\"></path></g></svg><span></span><svg height=\"15.5493pt\" style=\"vertical-align:-5.86298pt\" version=\"1.1\" viewbox=\"93.8031838 -9.68632 17.77 15.5493\" width=\"17.77pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,93.853,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,96.358,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,102.119,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,108.659,0)\"></path></g></svg><span></span><svg height=\"15.5493pt\" style=\"vertical-align:-5.86298pt\" version=\"1.1\" viewbox=\"113.75218380000001 -9.68632 6.513 15.5493\" width=\"6.513pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,113.802,0)\"><use xlink:href=\"#g113-106\"></use></g><g transform=\"matrix(.013,0,0,-0.013,117.351,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"15.5493pt\" style=\"vertical-align:-5.86298pt\" version=\"1.1\" viewbox=\"122.4441838 -9.68632 8.464 15.5493\" width=\"8.464pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,122.494,0)\"><use xlink:href=\"#g113-107\"></use></g><g transform=\"matrix(.013,0,0,-0.013,127.994,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"15.5493pt\" style=\"vertical-align:-5.86298pt\" version=\"1.1\" viewbox=\"133.0871838 -9.68632 17.802 15.5493\" width=\"17.802pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,133.137,0)\"><use xlink:href=\"#g113-108\"></use></g><g transform=\"matrix(.013,0,0,-0.013,143.308,0)\"></path></g></svg><span></span><span><svg height=\"15.5493pt\" style=\"vertical-align:-5.86298pt\" version=\"1.1\" viewbox=\"154.5211838 -9.68632 6.697 15.5493\" width=\"6.697pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,154.571,0)\"><use xlink:href=\"#g113-50\"></use></g></svg>.</span></span> Zhao discovered the following curious congruence for any odd prime <span><svg height=\"10.2124pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.78297 7.83752 10.2124\" width=\"7.83752pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>,</span> <span><svg height=\"14.7625pt\" style=\"vertical-align:-5.47417pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 36.965 14.7625\" width=\"36.965pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-91\"></use></g><g transform=\"matrix(.013,0,0,-0.013,8.996,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,13.494,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.204,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,29.334,0)\"></path></g></svg><span></span><svg height=\"14.7625pt\" style=\"vertical-align:-5.47417pt\" version=\"1.1\" viewbox=\"40.5471838 -9.28833 86.298 14.7625\" width=\"86.298pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,40.597,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,48.228,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,54.468,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,62.216,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,67.65,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,73.21,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,78.197,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,82.695,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,93.289,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,100.037,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,111.346,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,119.056,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,123.554,0)\"></path></g></svg><span></span></span> Xia and Cai extended the above congruence to modulo <span><svg height=\"17.0656pt\" style=\"vertical-align:-5.474199pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 15.621 17.0656\" width=\"15.621pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.71,-5.741)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,12.657,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"17.0656pt\" style=\"vertical-align:-5.474199pt\" version=\"1.1\" viewbox=\"17.750183800000002 -11.5914 36.965 17.0656\" width=\"36.965pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,17.8,0)\"><use xlink:href=\"#g113-91\"></use></g><g transform=\"matrix(.013,0,0,-0.013,26.796,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,31.294,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,39.004,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,47.134,0)\"><use xlink:href=\"#g117-35\"></use></g></svg><span></span><svg height=\"17.0656pt\" style=\"vertical-align:-5.474199pt\" version=\"1.1\" viewbox=\"58.347183799999996 -11.5914 41.564 17.0656\" width=\"41.564pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,58.397,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,64.637,0)\"><use xlink:href=\"#g113-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,70.877,0)\"><use xlink:href=\"#g113-67\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,78.625,3.132)\"><use xlink:href=\"#g50-113\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,84.058,3.132)\"><use xlink:href=\"#g54-33\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,89.619,3.132)\"><use xlink:href=\"#g50-52\"></use></g><g transform=\"matrix(.013,0,0,-0.013,94.605,0)\"><use xlink:href=\"#g113-48\"></use></g></svg><span></span><svg height=\"17.0656pt\" style=\"vertical-align:-5.474199pt\" version=\"1.1\" viewbox=\"99.9161838 -11.5914 89.604 17.0656\" width=\"89.604pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,99.966,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,104.464,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,115.08,0)\"><use xlink:href=\"#g117-33\"></use></g><g transform=\"matrix(.013,0,0,-0.013,125.617,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,131.857,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,139.26,0)\"><use xlink:href=\"#g117-33\"></use></g><g transform=\"matrix(.013,0,0,-0.013,149.797,0)\"><use xlink:href=\"#g113-52\"></use></g><g transform=\"matrix(.013,0,0,-0.013,156.037,0)\"><use xlink:href=\"#g113-67\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,163.785,3.132)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,168.217,3.132)\"><use xlink:href=\"#g50-113\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,173.65,3.132)\"><use xlink:href=\"#g54-33\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,179.21,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,184.214,0)\"><use xlink:href=\"#g113-48\"></use></g></svg><span></span><svg height=\"17.0656pt\" style=\"vertical-align:-5.474199pt\" version=\"1.1\" viewbox=\"189.52518379999998 -11.5914 90.404 17.0656\" width=\"90.404pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,189.575,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,194.073,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,204.689,0)\"><use xlink:href=\"#g117-33\"></use></g><g transform=\"matrix(.013,0,0,-0.013,215.225,0)\"><use xlink:href=\"#g113-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,221.465,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,225.963,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,230.461,0)\"><use xlink:href=\"#g121-107\"></use></g><g transform=\"matrix(.013,0,0,-0.013,241.056,0)\"><use xlink:href=\"#g121-109\"></use></g><g transform=\"matrix(.013,0,0,-0.013,247.803,0)\"><use xlink:href=\"#g121-98\"></use></g><g transform=\"matrix(.013,0,0,-0.013,259.112,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,266.822,-5.741)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,271.769,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,276.267,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span></span> where <span><svg height=\"11.5434pt\" style=\"vertical-align:-3.42945pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.11395 18.973 11.5434\" width=\"18.973pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.342,0)\"></path></g></svg><span></span><svg height=\"11.5434pt\" style=\"vertical-align:-3.42945pt\" version=\"1.1\" viewbox=\"22.555183800000002 -8.11395 6.419 11.5434\" width=\"6.419pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.605,0)\"></path></g></svg></span> is a prime. In this paper, we consider the congruences about <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 60.406 12.7178\" width=\"60.406pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-91\"></use></g><g transform=\"matrix(.013,0,0,-0.013,8.996,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,13.494,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,17.979,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,22.477,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,33.093,0)\"><use xlink:href=\"#g117-33\"></use></g><g transform=\"matrix(.013,0,0,-0.013,43.63,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,52.775,0)\"></path></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"63.2611838 -9.28833 20.765 12.7178\" width=\"20.765pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,63.311,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,74.222,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,78.72,0)\"><use xlink:href=\"#g113-48\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"84.03118380000001 -9.28833 20.326 12.7178\" width=\"20.326pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,84.081,0)\"><use xlink:href=\"#g113-79\"></use></g><g transform=\"matrix(.013,0,0,-0.013,94.991,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,99.476,0)\"><use xlink:href=\"#g113-42\"></use></g></svg></span> (where <svg height=\"11.439pt\" style=\"vertical-align:-2.15067pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 16.3975 11.439\" width=\"16.3975pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-92\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.485,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.752,0)\"><use xlink:href=\"#g113-94\"></use></g></svg> is the integral part of <span><svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.39387 6.1673\" width=\"7.39387pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-121\"></use></g></svg>,</span> <span><svg height=\"10.2124pt\" style=\"vertical-align:-1.576501pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 22.173 10.2124\" width=\"22.173pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-79\"></use></g><g transform=\"matrix(.013,0,0,-0.013,14.542,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"10.2124pt\" style=\"vertical-align:-1.576501pt\" version=\"1.1\" viewbox=\"25.7551838 -8.6359 9.204 10.2124\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,25.805,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.045,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"10.2124pt\" style=\"vertical-align:-1.576501pt\" version=\"1.1\" viewbox=\"37.1381838 -8.6359 9.204 10.2124\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,37.188,0)\"><use xlink:href=\"#g113-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,43.428,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"10.2124pt\" style=\"vertical-align:-1.576501pt\" version=\"1.1\" viewbox=\"48.521183799999996 -8.6359 9.204 10.2124\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,48.571,0)\"><use xlink:href=\"#g113-52\"></use></g><g transform=\"matrix(.013,0,0,-0.013,54.811,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"10.2124pt\" style=\"vertical-align:-1.576501pt\" version=\"1.1\" viewbox=\"59.9041838 -8.6359 9.205 10.2124\" width=\"9.205pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,59.954,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,66.195,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"10.2124pt\" style=\"vertical-align:-1.576501pt\" version=\"1.1\" viewbox=\"71.2881838 -8.6359 6.567 10.2124\" width=\"6.567pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,71.338,0)\"></path></g></svg>)</span></span> modulo <span><svg height=\"15.0208pt\" style=\"vertical-align:-3.429399pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 12.784 15.0208\" width=\"12.784pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.71,-5.741)\"><use xlink:href=\"#g50-51\"></use></g></svg>.</span> When <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 22.173 8.8423\" width=\"22.173pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-79\"></use></g><g transform=\"matrix(.013,0,0,-0.013,14.542,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"25.7551838 -8.6359 6.429 8.8423\" width=\"6.429pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,25.805,0)\"><use xlink:href=\"#g113-50\"></use></g></svg>,</span></span> the results we obtain are the results of Zhao and Xia and Cai.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"37 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/8445635","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用