Modified cellulose nanocrystals enhanced polycaprolactone multifunctional films with barrier, UV-blocking and antimicrobial properties for food packaging
Asmaa N. Alkassfarity , Mohamed A. Yassin , Mona H. Abdel Rehim , Lipeng Liu , Ziyue Jiao , Bo Wang , Zhiyong Wei
{"title":"Modified cellulose nanocrystals enhanced polycaprolactone multifunctional films with barrier, UV-blocking and antimicrobial properties for food packaging","authors":"Asmaa N. Alkassfarity , Mohamed A. Yassin , Mona H. Abdel Rehim , Lipeng Liu , Ziyue Jiao , Bo Wang , Zhiyong Wei","doi":"10.1016/j.ijbiomac.2024.129871","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The packaging industry demands improved eco-friendly materials with new and enhanced properties. In this context, bio-nanocomposite films with antimicrobial and UV-shielding properties based on modified cellulose nanocrystals/polycaprolactone (MCNC/PCL) were fabricated via solution casting method, and then food packaging simulation was carried out. CNCs were obtained by acid hydrolysis<span> followed by successful functionalization with Quaternary ammonium surfactant, confirmed by FTIR, XPS, XRD, TEM, and DLS analyses. Furthermore, the morphological, physical, antibacterial, and food packaging properties of all prepared films were investigated. Results showed that the mechanical, UV blocking, barrier properties, and </span></span>antibacterial activity<span> of all composite films were remarkably improved. Particularly, the addition of 3 wt% MCNC increased the tensile strength<span> and elongation at break by 27.5 % and 20.0 %, respectively. Moreover, the permeability of O2, CO2, and water vapor dramatically reduced by 97.6 %, 96.7 %, and 49.8% compared to the Neat PCL. Further, the UV-blocking properties of the composite films were significantly improved. The antimicrobial properties of MCNC/PCL films showed good antimicrobial properties against </span></span></span><em>S. aureus</em>. Finally, cherry packaged with 1 and 3 wt% MCNC films exhibited satisfactory freshness after 22 days of preservation. Overall, the fabricated PCL nanocomposite films can be utilized in the food packaging industry.</p></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"261 ","pages":"Article 129871"},"PeriodicalIF":8.5000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813024006743","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The packaging industry demands improved eco-friendly materials with new and enhanced properties. In this context, bio-nanocomposite films with antimicrobial and UV-shielding properties based on modified cellulose nanocrystals/polycaprolactone (MCNC/PCL) were fabricated via solution casting method, and then food packaging simulation was carried out. CNCs were obtained by acid hydrolysis followed by successful functionalization with Quaternary ammonium surfactant, confirmed by FTIR, XPS, XRD, TEM, and DLS analyses. Furthermore, the morphological, physical, antibacterial, and food packaging properties of all prepared films were investigated. Results showed that the mechanical, UV blocking, barrier properties, and antibacterial activity of all composite films were remarkably improved. Particularly, the addition of 3 wt% MCNC increased the tensile strength and elongation at break by 27.5 % and 20.0 %, respectively. Moreover, the permeability of O2, CO2, and water vapor dramatically reduced by 97.6 %, 96.7 %, and 49.8% compared to the Neat PCL. Further, the UV-blocking properties of the composite films were significantly improved. The antimicrobial properties of MCNC/PCL films showed good antimicrobial properties against S. aureus. Finally, cherry packaged with 1 and 3 wt% MCNC films exhibited satisfactory freshness after 22 days of preservation. Overall, the fabricated PCL nanocomposite films can be utilized in the food packaging industry.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.