Synergistic effect of oxygen species and vacancy for enhanced electrochemical CO2 conversion to formate on indium oxide

IF 42.9 Q1 ELECTROCHEMISTRY
Tengfei Ma , Zihao Jiao , Haoran Qiu , Feng Wang, Ya Liu, Liejin Guo
{"title":"Synergistic effect of oxygen species and vacancy for enhanced electrochemical CO2 conversion to formate on indium oxide","authors":"Tengfei Ma ,&nbsp;Zihao Jiao ,&nbsp;Haoran Qiu ,&nbsp;Feng Wang,&nbsp;Ya Liu,&nbsp;Liejin Guo","doi":"10.1016/j.esci.2024.100246","DOIUrl":null,"url":null,"abstract":"<div><p>Indium-based oxides are promising electrocatalysts for producing formate via CO<sub>2</sub> reduction reaction, in which ∗OCHO is considered the key intermediate. Here, we identified that the ∗COOH pathway could be preferential to produce formate on In<sub>2</sub>O<sub>3</sub> of In/In<sub>2</sub>O<sub>3</sub> heterojunction due to the synergistic effect of oxygen species and vacancy. Specifically, ∗CO<sub>2</sub> and ∗COOH were observed on In<sub>2</sub>O<sub>3</sub> and related to formate production by <em>in situ</em> Raman spectroscopy. The theoretical calculations further demonstrated that the energy barrier of the ∗COOH formation on In<sub>2</sub>O<sub>3</sub> was decreased in the presence of oxygen vacancy, similar to or lower than that of the ∗OCHO formation on the In surface. As a result, a formate selectivity of over 90% was obtained on prepared In/In<sub>2</sub>O<sub>3</sub> heterojunction with 343 ​± ​7 ​mA ​cm<sup>−2</sup> partial current density. Furthermore, when using a Si-based photovoltaic as an energy supplier, 10.11% solar–to–fuel energy efficiency was achieved.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 3","pages":"Article 100246"},"PeriodicalIF":42.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141724000259/pdfft?md5=b5d9ca7861e20f0d229e8e7010ee898c&pid=1-s2.0-S2667141724000259-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724000259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Indium-based oxides are promising electrocatalysts for producing formate via CO2 reduction reaction, in which ∗OCHO is considered the key intermediate. Here, we identified that the ∗COOH pathway could be preferential to produce formate on In2O3 of In/In2O3 heterojunction due to the synergistic effect of oxygen species and vacancy. Specifically, ∗CO2 and ∗COOH were observed on In2O3 and related to formate production by in situ Raman spectroscopy. The theoretical calculations further demonstrated that the energy barrier of the ∗COOH formation on In2O3 was decreased in the presence of oxygen vacancy, similar to or lower than that of the ∗OCHO formation on the In surface. As a result, a formate selectivity of over 90% was obtained on prepared In/In2O3 heterojunction with 343 ​± ​7 ​mA ​cm−2 partial current density. Furthermore, when using a Si-based photovoltaic as an energy supplier, 10.11% solar–to–fuel energy efficiency was achieved.

Abstract Image

Abstract Image

氧化铟上氧物种和空位对增强二氧化碳转化为甲酸盐的电化学作用的协同效应
铟基氧化物是一种很有前景的电催化剂,可通过二氧化碳还原反应生成甲酸盐,其中*OCHO 被认为是关键的中间产物。在这里,我们发现,由于氧物种和空位的协同作用,*COOH途径可能优先在In/In2O3异质结的In2O3上产生甲酸盐。具体来说,在 In2O3 上观察到了 *CO2 和 *COOH,并通过原位拉曼光谱分析了它们与甲酸盐生成的关系。理论计算进一步证明,在存在氧空位的情况下,In2O3 上形成 *COOH 的能垒降低,与 In 表面形成 *OCHO 的能垒相似或更低。因此,在制备的 In/In2O3 异质结上获得了超过 90% 的甲酸选择性,部分电流密度为 343 ± 7 mA cm-2。此外,当使用硅基光伏作为能源供应时,太阳能转化为燃料的效率达到了 10.11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信