Newton-Okounkov bodies of chemical reaction systems

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Nida Kazi Obatake , Elise Walker
{"title":"Newton-Okounkov bodies of chemical reaction systems","authors":"Nida Kazi Obatake ,&nbsp;Elise Walker","doi":"10.1016/j.aam.2024.102672","DOIUrl":null,"url":null,"abstract":"<div><p>Despite their noted potential in polynomial-system solving, there are few concrete examples of Newton-Okounkov bodies arising from applications. Accordingly, in this paper, we introduce a new application of Newton-Okounkov body theory to the study of chemical reaction networks and compute several examples. An important invariant of a chemical reaction network is its maximum number of positive steady states Here, we introduce a new upper bound on this number, namely the ‘Newton-Okounkov body bound’ of a chemical reaction network. Through explicit examples, we show that the Newton-Okounkov body bound of a network gives a good upper bound on its maximum number of positive steady states. We also compare this Newton-Okounkov body bound to a related upper bound, namely the mixed volume of a chemical reaction network, and find that it often achieves better bounds.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000034","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Despite their noted potential in polynomial-system solving, there are few concrete examples of Newton-Okounkov bodies arising from applications. Accordingly, in this paper, we introduce a new application of Newton-Okounkov body theory to the study of chemical reaction networks and compute several examples. An important invariant of a chemical reaction network is its maximum number of positive steady states Here, we introduce a new upper bound on this number, namely the ‘Newton-Okounkov body bound’ of a chemical reaction network. Through explicit examples, we show that the Newton-Okounkov body bound of a network gives a good upper bound on its maximum number of positive steady states. We also compare this Newton-Okounkov body bound to a related upper bound, namely the mixed volume of a chemical reaction network, and find that it often achieves better bounds.

化学反应系统的牛顿-奥孔科夫体
尽管牛顿-奥孔科夫体在多项式系统求解中具有显著的潜力,但在应用中产生的牛顿-奥孔科夫体的具体实例却很少。因此,我们在本文中介绍了牛顿-奥孔科夫体理论在化学反应网络研究中的新应用,并计算了几个实例。化学反应网络的一个重要不变式是其正稳态的最大数目。在此,我们引入了一个新的上界,即化学反应网络的 "牛顿-奥孔科夫体界"。通过明确的示例,我们证明网络的牛顿-奥孔科夫体约束为其正稳态的最大数量提供了一个很好的上界。我们还将牛顿-奥孔科夫体界与相关的上界(即化学反应网络的混合体积)进行了比较,发现它往往能达到更好的界值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信