{"title":"Production of biliverdin by biotransformation of exogenous heme using recombinant Pichia pastoris cells","authors":"Jianfeng Mei, Yanchao Han, Shihang Zhuang, Zhikai Yang, Yu Yi, Guoqing Ying","doi":"10.1186/s40643-024-00736-w","DOIUrl":null,"url":null,"abstract":"<p>Biliverdin, a bile pigment hydrolyzed from heme by heme oxygenase (HO), serves multiple functions in the human body, including antioxidant, anti-inflammatory, and immune response inhibitory activities. Biliverdin has great potential as a clinical drug; however, no economic and efficient production method is available currently. Therefore, the production of biliverdin by the biotransformation of exogenous heme using recombinant HO-expressing yeast cells was studied in this research. First, the heme oxygenase-1 gene (<i>HO1</i>) encoding the inducible plastidic isozyme from <i>Arabidopsis thaliana</i>, with the plastid transport peptide sequence removed, was recombined into <i>Pichia pastoris</i> GS115 cells. This resulted in the construction of a recombinant <i>P. pastoris</i> GS115-HO1 strain that expressed active HO1 in the cytoplasm. After that, the concentration of the inducer methanol, the induction culture time, the pH of the medium, and the concentration of sorbitol supplied in the medium were optimized, resulting in a significant improvement in the yield of HO1. Subsequently, the whole cells of GS115-HO1 were employed as catalysts to convert heme chloride (hemin) into biliverdin. The results showed that the yield of biliverdin was 132 mg/L when hemin was added to the culture of GS115-HO1 and incubated for 4 h at 30 °C. The findings of this study have laid a good foundation for future applications of this method for the economical production of biliverdin.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"1 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-024-00736-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biliverdin, a bile pigment hydrolyzed from heme by heme oxygenase (HO), serves multiple functions in the human body, including antioxidant, anti-inflammatory, and immune response inhibitory activities. Biliverdin has great potential as a clinical drug; however, no economic and efficient production method is available currently. Therefore, the production of biliverdin by the biotransformation of exogenous heme using recombinant HO-expressing yeast cells was studied in this research. First, the heme oxygenase-1 gene (HO1) encoding the inducible plastidic isozyme from Arabidopsis thaliana, with the plastid transport peptide sequence removed, was recombined into Pichia pastoris GS115 cells. This resulted in the construction of a recombinant P. pastoris GS115-HO1 strain that expressed active HO1 in the cytoplasm. After that, the concentration of the inducer methanol, the induction culture time, the pH of the medium, and the concentration of sorbitol supplied in the medium were optimized, resulting in a significant improvement in the yield of HO1. Subsequently, the whole cells of GS115-HO1 were employed as catalysts to convert heme chloride (hemin) into biliverdin. The results showed that the yield of biliverdin was 132 mg/L when hemin was added to the culture of GS115-HO1 and incubated for 4 h at 30 °C. The findings of this study have laid a good foundation for future applications of this method for the economical production of biliverdin.
期刊介绍:
Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology