Hierarchical design and coupling deformation of lattice structures with variable unit cells manufactured by laser powder bed fusion

IF 6.6 1区 工程技术 Q1 ENGINEERING, CIVIL
Dongming Li , Bingzhi Chen , Deyu Yue , Tongyuan Sun , Xu Zhang
{"title":"Hierarchical design and coupling deformation of lattice structures with variable unit cells manufactured by laser powder bed fusion","authors":"Dongming Li ,&nbsp;Bingzhi Chen ,&nbsp;Deyu Yue ,&nbsp;Tongyuan Sun ,&nbsp;Xu Zhang","doi":"10.1016/j.tws.2024.111667","DOIUrl":null,"url":null,"abstract":"<div><p>With the development of additive manufacturing technology<span>, lattice structures with complex topological shapes can be manufactured. In order to combine the advantages of stretch dominance and bend dominance, a hierarchical lattice structure composed of variable unit cell is proposed. The hierarchical lattice structures are manufactured by laser powder bed fusion<span> (LPBF). Five different cell arrangement combinations are designed based on face centered cubic<span><span> (FCC) with octet truss structure (OTS) at the macro scale. The mechanical performance and </span>deformation behavior<span> of the hierarchical lattice was investigated systematically through compressive experiments and numerical simulations. The deformation modes<span> were captured with a digital camera. Then, the crashworthiness design on the Row layered structure parametric analysis<span> was performed to discuss the effect of geometrical parameters including component ratio and size ratio. The results indicated that the hierarchical structure exhibits a mixed deformation mode among those the Row layered structure has the best energy absorption characteristics. And the specific ratios of these geometrical parameters significantly enhance the energy absorption of hierarchical structure. Overall, this work not only provides a novel solution for designing hierarchical structures, but also highlights the advantages of additive manufacturing techniques for manufacturing complex structures.</span></span></span></span></span></span></p></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"198 ","pages":"Article 111667"},"PeriodicalIF":6.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124001113","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of additive manufacturing technology, lattice structures with complex topological shapes can be manufactured. In order to combine the advantages of stretch dominance and bend dominance, a hierarchical lattice structure composed of variable unit cell is proposed. The hierarchical lattice structures are manufactured by laser powder bed fusion (LPBF). Five different cell arrangement combinations are designed based on face centered cubic (FCC) with octet truss structure (OTS) at the macro scale. The mechanical performance and deformation behavior of the hierarchical lattice was investigated systematically through compressive experiments and numerical simulations. The deformation modes were captured with a digital camera. Then, the crashworthiness design on the Row layered structure parametric analysis was performed to discuss the effect of geometrical parameters including component ratio and size ratio. The results indicated that the hierarchical structure exhibits a mixed deformation mode among those the Row layered structure has the best energy absorption characteristics. And the specific ratios of these geometrical parameters significantly enhance the energy absorption of hierarchical structure. Overall, this work not only provides a novel solution for designing hierarchical structures, but also highlights the advantages of additive manufacturing techniques for manufacturing complex structures.

通过激光粉末床熔融技术制造的具有可变单元格的晶格结构的分层设计和耦合变形
随着增材制造技术的发展,具有复杂拓扑形状的晶格结构可以被制造出来。为了结合拉伸优势和弯曲优势,本文提出了一种由可变单元格组成的分层晶格结构。分层晶格结构是通过激光粉末床熔融(LPBF)制造的。在宏观尺度上,基于面心立方(FCC)和八元桁架结构(OTS)设计了五种不同的单元排列组合。通过压缩实验和数值模拟,系统地研究了分层晶格的机械性能和变形行为。用数码相机捕捉了变形模式。然后,对行列式分层结构进行了耐撞性设计参数分析,讨论了几何参数(包括部件比和尺寸比)的影响。结果表明,分层结构表现出混合变形模式,其中,Row 分层结构具有最佳的能量吸收特性。而这些几何参数的特定比例能显著提高分层结构的能量吸收能力。总之,这项工作不仅为分层结构的设计提供了一种新的解决方案,而且凸显了增材制造技术在制造复杂结构方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信