Preparation of molecularly well-defined silicone resins based on trifluoropropyl-substituted trisilanol and their thermal, mechanical, and UV-resistance properties
{"title":"Preparation of molecularly well-defined silicone resins based on trifluoropropyl-substituted trisilanol and their thermal, mechanical, and UV-resistance properties","authors":"Miku Kosaka, Taishi Nakano, Kenji Kanaori, Hiroaki Imoto, Kensuke Naka","doi":"10.1038/s41428-024-00886-w","DOIUrl":null,"url":null,"abstract":"We prepared flexible free-standing films of trifluoropropyl-substituted open-cage silsesquioxane-pendant polysiloxane by optimizing the sol-gel reaction conditions of tris(dimethoxysilyl-ethyl-dimethylsiloxy)-heptatrifluoropropyl-substituted open-cage silsesquioxane (1). The polycondensation of 1 was fully achieved even at 50 °C for 6 h under vacuo. 29Si CP-MAS NMR analysis indicated that the flexible free-standing films, polycondensed at 50 °C and 180 °C, included cyclotrisiloxane (D3) and linear siloxane (Dlinear) structures. The elastic modulus and decomposition temperature at 5% mass weight loss (Td5) of the product by polycondensation at 180 °C under N2 were significantly greater than those for the 50 °C product. Significant changes in the UV‒vis spectra of the resulting transparent films were not observed even after 13 days of UV irradiation in air. In contrast, UV irradiation of the isobutyl-substituted counterpart under air clearly caused a decrease in its transmittance due to autoxidative degradation. Free-standing films of trifluoropropyl-substituted open-cage silsesquioxane-pendant polysiloxane by optimizing sol-gel reaction condition of tris(dimethoxysilyl-ethyl-dimethylsiloxy)-heptatrifluoropropyl-substituted open-cage silsesquioxane. Elastic modulus and the decomposition temperature for 5% weight loss under N2 of the product by polycondensation at 180 °C were significantly higher than that by polycondensation at 50 °C. Significant changes in the UV-vis spectra of the resulting transparent films were hardly observed even after 13 days of UV irradiation.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"56 5","pages":"481-489"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-024-00886-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We prepared flexible free-standing films of trifluoropropyl-substituted open-cage silsesquioxane-pendant polysiloxane by optimizing the sol-gel reaction conditions of tris(dimethoxysilyl-ethyl-dimethylsiloxy)-heptatrifluoropropyl-substituted open-cage silsesquioxane (1). The polycondensation of 1 was fully achieved even at 50 °C for 6 h under vacuo. 29Si CP-MAS NMR analysis indicated that the flexible free-standing films, polycondensed at 50 °C and 180 °C, included cyclotrisiloxane (D3) and linear siloxane (Dlinear) structures. The elastic modulus and decomposition temperature at 5% mass weight loss (Td5) of the product by polycondensation at 180 °C under N2 were significantly greater than those for the 50 °C product. Significant changes in the UV‒vis spectra of the resulting transparent films were not observed even after 13 days of UV irradiation in air. In contrast, UV irradiation of the isobutyl-substituted counterpart under air clearly caused a decrease in its transmittance due to autoxidative degradation. Free-standing films of trifluoropropyl-substituted open-cage silsesquioxane-pendant polysiloxane by optimizing sol-gel reaction condition of tris(dimethoxysilyl-ethyl-dimethylsiloxy)-heptatrifluoropropyl-substituted open-cage silsesquioxane. Elastic modulus and the decomposition temperature for 5% weight loss under N2 of the product by polycondensation at 180 °C were significantly higher than that by polycondensation at 50 °C. Significant changes in the UV-vis spectra of the resulting transparent films were hardly observed even after 13 days of UV irradiation.
期刊介绍:
Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews.
Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Polymer synthesis and reactions
Polymer structures
Physical properties of polymers
Polymer surface and interfaces
Functional polymers
Supramolecular polymers
Self-assembled materials
Biopolymers and bio-related polymer materials
Polymer engineering.