Unique Factorization for Tensor Products of Parabolic Verma Modules

IF 0.5 4区 数学 Q3 MATHEMATICS
K. N. Raghavan, V. Sathish Kumar, R. Venkatesh, Sankaran Viswanath
{"title":"Unique Factorization for Tensor Products of Parabolic Verma Modules","authors":"K. N. Raghavan,&nbsp;V. Sathish Kumar,&nbsp;R. Venkatesh,&nbsp;Sankaran Viswanath","doi":"10.1007/s10468-024-10254-0","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathfrak g\\)</span> be a symmetrizable Kac-Moody Lie algebra with Cartan subalgebra <span>\\(\\mathfrak h\\)</span>. We prove a unique factorization property for tensor products of parabolic Verma modules. More generally, we prove unique factorization for products of characters of parabolic Verma modules when restricted to certain subalgebras of <span>\\(\\mathfrak h\\)</span>. These include fixed point subalgebras of <span>\\(\\mathfrak h\\)</span> under subgroups of diagram automorphisms of <span>\\(\\mathfrak g\\)</span> and twisted graph automorphisms in the affine case.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 2","pages":"1203 - 1220"},"PeriodicalIF":0.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10254-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathfrak g\) be a symmetrizable Kac-Moody Lie algebra with Cartan subalgebra \(\mathfrak h\). We prove a unique factorization property for tensor products of parabolic Verma modules. More generally, we prove unique factorization for products of characters of parabolic Verma modules when restricted to certain subalgebras of \(\mathfrak h\). These include fixed point subalgebras of \(\mathfrak h\) under subgroups of diagram automorphisms of \(\mathfrak g\) and twisted graph automorphisms in the affine case.

抛物线维尔马模块张量乘的唯一因式分解
让 \(\mathfrak g\) 是一个具有 Cartan 子代数 \(\mathfrak h\) 的可对称 Kac-Moody Lie 代数。我们证明了抛物面 Verma 模块张量乘的唯一因式分解性质。更广义地说,我们证明了抛物面 Verma 模块的张量积的唯一因式分解性质,当它局限于 \(\mathfrak h\) 的某些子代数时。这些子代数包括在 \(\mathfrak g\) 的图自形子群下的\(\mathfrak h\) 的定点子代数,以及在仿射情况下的扭曲图自形子群下的\(\mathfrak g\) 的定点子代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信