Adaptive kernel density estimation for improved sky map computation in gamma-ray astronomy

IF 4.2 3区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
M. Holler, T. Mitterdorfer, S. Panny
{"title":"Adaptive kernel density estimation for improved sky map computation in gamma-ray astronomy","authors":"M. Holler,&nbsp;T. Mitterdorfer,&nbsp;S. Panny","doi":"10.1016/j.astropartphys.2024.102934","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce an alternative method for the calculation of sky maps from data taken with gamma-ray telescopes. In contrast to the established method of smoothing the 2D histogram of reconstructed event directions with a static kernel, we apply a Kernel Density Estimation (KDE) where the kernel size of each gamma-ray candidate is related to its estimated direction uncertainty. Exploiting this additional information implies a gain in resulting image quality, which is validated using both simulations and data. For the tested simulation and analysis configuration, the achieved improvement can only be matched with the classical approach by removing events with lower reconstruction quality, reducing the data set by a considerable amount.</p></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"158 ","pages":"Article 102934"},"PeriodicalIF":4.2000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927650524000112/pdfft?md5=a177a043ba4e7016e034a0aa302bd60a&pid=1-s2.0-S0927650524000112-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927650524000112","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce an alternative method for the calculation of sky maps from data taken with gamma-ray telescopes. In contrast to the established method of smoothing the 2D histogram of reconstructed event directions with a static kernel, we apply a Kernel Density Estimation (KDE) where the kernel size of each gamma-ray candidate is related to its estimated direction uncertainty. Exploiting this additional information implies a gain in resulting image quality, which is validated using both simulations and data. For the tested simulation and analysis configuration, the achieved improvement can only be matched with the classical approach by removing events with lower reconstruction quality, reducing the data set by a considerable amount.

改进伽马射线天文学天图计算的自适应核密度估计
我们介绍了一种利用伽马射线望远镜拍摄的数据计算天空图的替代方法。与使用静态核对重建事件方向的二维直方图进行平滑处理的既定方法不同,我们采用了核密度估计法(KDE),其中每个伽马射线候选体的核大小与其估计的方向不确定性相关。利用这一额外信息意味着图像质量的提高,这一点通过模拟和数据都得到了验证。在测试的模拟和分析配置中,只有通过删除重建质量较低的事件,减少相当数量的数据集,才能与传统方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astroparticle Physics
Astroparticle Physics 地学天文-天文与天体物理
CiteScore
8.00
自引率
2.90%
发文量
41
审稿时长
79 days
期刊介绍: Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信