Pixel art character generation as an image-to-image translation problem using GANs

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Flávio Coutinho , Luiz Chaimowicz
{"title":"Pixel art character generation as an image-to-image translation problem using GANs","authors":"Flávio Coutinho ,&nbsp;Luiz Chaimowicz","doi":"10.1016/j.gmod.2024.101213","DOIUrl":null,"url":null,"abstract":"<div><p>Asset creation in game development usually requires multiple iterations until a final version is achieved. This iterative process becomes more significant when the content is pixel art, in which the artist carefully places each pixel. We hypothesize that the problem of generating character sprites in a target pose (e.g., facing right) given a source (e.g., facing front) can be framed as an image-to-image translation task. Then, we present an architecture of deep generative models that takes as input an image of a character in one domain (pose) and transfers it to another. We approach the problem using generative adversarial networks (GANs) and build on Pix2Pix’s architecture while leveraging some specific characteristics of the pixel art style. We evaluated the trained models using four small datasets (less than 1k) and a more extensive and diverse one (12k). The models yielded promising results, and their generalization capacity varies according to the dataset size and variability. After training models to generate images among four domains (i.e., front, right, back, left), we present an early version of a mixed-initiative sprite editor that allows users to interact with them and iterate in creating character sprites.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"132 ","pages":"Article 101213"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000018/pdfft?md5=d7948e383c160b41fc886121e68e438f&pid=1-s2.0-S1524070324000018-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070324000018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Asset creation in game development usually requires multiple iterations until a final version is achieved. This iterative process becomes more significant when the content is pixel art, in which the artist carefully places each pixel. We hypothesize that the problem of generating character sprites in a target pose (e.g., facing right) given a source (e.g., facing front) can be framed as an image-to-image translation task. Then, we present an architecture of deep generative models that takes as input an image of a character in one domain (pose) and transfers it to another. We approach the problem using generative adversarial networks (GANs) and build on Pix2Pix’s architecture while leveraging some specific characteristics of the pixel art style. We evaluated the trained models using four small datasets (less than 1k) and a more extensive and diverse one (12k). The models yielded promising results, and their generalization capacity varies according to the dataset size and variability. After training models to generate images among four domains (i.e., front, right, back, left), we present an early version of a mixed-initiative sprite editor that allows users to interact with them and iterate in creating character sprites.

Abstract Image

Abstract Image

将像素艺术角色生成作为使用广义泛函模型的图像到图像转换问题
游戏开发中的资产创建通常需要多次迭代,直到完成最终版本。当内容是像素艺术时,这种迭代过程就变得更加重要,因为在像素艺术中,艺术家要仔细地放置每个像素。我们假设,在给定源(如朝向前方)的情况下,以目标姿势(如朝向右方)生成角色精灵的问题可以归结为图像到图像的转换任务。然后,我们提出了一种深度生成模型架构,它将一个领域(姿势)中的角色图像作为输入,并将其转换到另一个领域。我们使用生成对抗网络(GANs)来处理这个问题,并以 Pix2Pix 的架构为基础,同时利用像素艺术风格的一些特定特征。我们使用四个小型数据集(少于 1k)和一个更广泛、更多样的数据集(12k)对训练好的模型进行了评估。模型取得了可喜的成果,其泛化能力随数据集的大小和变化而变化。在训练模型生成四个域(即前、右、后、左)的图像后,我们展示了混合主动式精灵编辑器的早期版本,用户可以与模型互动,反复创建角色精灵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信