The rise of high-entropy battery materials

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Bin Ouyang, Yan Zeng
{"title":"The rise of high-entropy battery materials","authors":"Bin Ouyang, Yan Zeng","doi":"10.1038/s41467-024-45309-9","DOIUrl":null,"url":null,"abstract":"The emergence of high-entropy materials has inspired the exploration of novel materials in diverse technologies. In electrochemical energy storage, high-entropy design has shown advantageous impacts on battery materials such as suppressing undesired short-range order, frustrating energy landscape, decreasing volumetric change and reducing the reliance on critical metals. This comment addresses the definition and potential improper use of the term “high entropy” in the context of battery materials design, highlights the unique properties of high-entropy materials in battery applications, and outlines the remaining challenges in the synthesis, characterization, and computational modeling of high-entropy battery materials.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"26 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-45309-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of high-entropy materials has inspired the exploration of novel materials in diverse technologies. In electrochemical energy storage, high-entropy design has shown advantageous impacts on battery materials such as suppressing undesired short-range order, frustrating energy landscape, decreasing volumetric change and reducing the reliance on critical metals. This comment addresses the definition and potential improper use of the term “high entropy” in the context of battery materials design, highlights the unique properties of high-entropy materials in battery applications, and outlines the remaining challenges in the synthesis, characterization, and computational modeling of high-entropy battery materials.

Abstract Image

高熵电池材料的兴起
高熵材料的出现激发了人们对各种技术中新型材料的探索。在电化学储能领域,高熵设计已显示出对电池材料的有利影响,如抑制不希望出现的短程有序、改善能量分布、降低体积变化和减少对临界金属的依赖。本评论论述了电池材料设计中 "高熵 "一词的定义和可能的不当使用,强调了高熵材料在电池应用中的独特性能,并概述了高熵电池材料的合成、表征和计算建模方面仍然存在的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信