{"title":"The rise of high-entropy battery materials","authors":"Bin Ouyang, Yan Zeng","doi":"10.1038/s41467-024-45309-9","DOIUrl":null,"url":null,"abstract":"The emergence of high-entropy materials has inspired the exploration of novel materials in diverse technologies. In electrochemical energy storage, high-entropy design has shown advantageous impacts on battery materials such as suppressing undesired short-range order, frustrating energy landscape, decreasing volumetric change and reducing the reliance on critical metals. This comment addresses the definition and potential improper use of the term “high entropy” in the context of battery materials design, highlights the unique properties of high-entropy materials in battery applications, and outlines the remaining challenges in the synthesis, characterization, and computational modeling of high-entropy battery materials.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"26 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-45309-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of high-entropy materials has inspired the exploration of novel materials in diverse technologies. In electrochemical energy storage, high-entropy design has shown advantageous impacts on battery materials such as suppressing undesired short-range order, frustrating energy landscape, decreasing volumetric change and reducing the reliance on critical metals. This comment addresses the definition and potential improper use of the term “high entropy” in the context of battery materials design, highlights the unique properties of high-entropy materials in battery applications, and outlines the remaining challenges in the synthesis, characterization, and computational modeling of high-entropy battery materials.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.