What diameter? What height? Influence of measures of average tree size on area-based allometric volume relationships

IF 3.8 1区 农林科学 Q1 FORESTRY
Yilin Wang , John A. Kershaw , Mark J. Ducey , Yuan Sun , James B. McCarter
{"title":"What diameter? What height? Influence of measures of average tree size on area-based allometric volume relationships","authors":"Yilin Wang ,&nbsp;John A. Kershaw ,&nbsp;Mark J. Ducey ,&nbsp;Yuan Sun ,&nbsp;James B. McCarter","doi":"10.1016/j.fecs.2024.100171","DOIUrl":null,"url":null,"abstract":"<div><p>Volume is an important attribute used in many forest management decisions. Data from 83 fixed-area plots located in central New Brunswick, Canada, are used to examine how different measures of stand-level diameter and height influence volume prediction using a stand-level variant of Honer’s (1967) volume equation. When density was included in the models (<span><math><mrow><mrow><mtext>Volume</mtext><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mrow><mtext>Diameter</mtext><mo>,</mo><mtext>Height</mtext><mo>,</mo><mtext>Density</mtext></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></math></span> choice of diameter measure was more important than choice of height measure. When density was not included <span><math><mrow><mo>(</mo><mrow><mtext>Volume</mtext><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mrow><mtext>Diameter</mtext><mo>,</mo><mtext>Height</mtext></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></math></span>, the opposite was true. For models with density included, moment-based estimators of stand diameter and height performed better than all other measures. For models without density, largest tree estimators of stand diameter and height performed better than other measures. The overall best equation used quadratic mean diameter, Lorey’s height, and density (root mean square error ​= ​5.26 ​m<sup>3</sup>⋅ha<sup>−1</sup>; 1.9 % relative error). The best equation without density used mean diameter of the largest trees needed to calculate a stand density index of 400 and the mean height of the tallest 400 trees per ha (root mean square error ​= ​32.08 ​m<sup>3</sup>⋅ha<sup>−1</sup>; 11.8 % relative error). The results of this study have some important implications for height subsampling and LiDAR-derived forest inventory analyses.</p></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2197562024000071/pdfft?md5=0606a356a03de5b8009f12a288c6adc0&pid=1-s2.0-S2197562024000071-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562024000071","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Volume is an important attribute used in many forest management decisions. Data from 83 fixed-area plots located in central New Brunswick, Canada, are used to examine how different measures of stand-level diameter and height influence volume prediction using a stand-level variant of Honer’s (1967) volume equation. When density was included in the models (Volume=f(Diameter,Height,Density)) choice of diameter measure was more important than choice of height measure. When density was not included (Volume=f(Diameter,Height)), the opposite was true. For models with density included, moment-based estimators of stand diameter and height performed better than all other measures. For models without density, largest tree estimators of stand diameter and height performed better than other measures. The overall best equation used quadratic mean diameter, Lorey’s height, and density (root mean square error ​= ​5.26 ​m3⋅ha−1; 1.9 % relative error). The best equation without density used mean diameter of the largest trees needed to calculate a stand density index of 400 and the mean height of the tallest 400 trees per ha (root mean square error ​= ​32.08 ​m3⋅ha−1; 11.8 % relative error). The results of this study have some important implications for height subsampling and LiDAR-derived forest inventory analyses.

直径多少?什么高度?衡量树木平均大小对基于面积的异速体积关系的影响
体积是许多森林管理决策中使用的重要属性。本文利用加拿大新不伦瑞克省中部 83 块固定面积地块的数据,采用霍纳(1967 年)体积方程的林分变体,研究了不同的林分直径和高度测量方法对体积预测的影响。当模型中包含密度时(体积=f(直径、高度、密度)),直径测量值的选择比高度测量值的选择更重要。当不包含密度时(体积=f(直径,高度)),情况正好相反。在包含密度的模型中,基于矩的林分直径和高度估计值的表现优于所有其他测量值。对于不含密度的模型,林分直径和高度的最大树估算值优于其他估算值。最佳方程采用二次平均直径、Lorey 高度和密度(均方根误差 = 5.26 立方米/公顷-1;相对误差 1.9%)。不含密度的最佳方程使用了计算林分密度指数 400 所需的最大树木的平均直径和每公顷最高 400 棵树的平均高度(均方根误差 = 32.08 立方米/公顷-1;相对误差 11.8%)。这项研究的结果对高度子取样和源自激光雷达的森林资源清查分析具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forest Ecosystems
Forest Ecosystems Environmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍: Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信