{"title":"Superzeta functions on function fields","authors":"Kajtaz H. Bllaca , Jawher Khmiri , Kamel Mazhouda , Bouchaïb Sodaïgui","doi":"10.1016/j.ffa.2024.102367","DOIUrl":null,"url":null,"abstract":"<div><p>We study the superzeta functions on function fields as constructed by Voros (see <span>[11, Chapter 10, p.91]</span><span><span>) in the case of the classical Riemann zeta function. Furthermore, we study special values of those functions, relate them to the Li coefficients, deduce some interesting summation formulas, and prove some results about the regularized product of the zeros of </span>zeta functions on function fields.</span></p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724000078","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the superzeta functions on function fields as constructed by Voros (see [11, Chapter 10, p.91]) in the case of the classical Riemann zeta function. Furthermore, we study special values of those functions, relate them to the Li coefficients, deduce some interesting summation formulas, and prove some results about the regularized product of the zeros of zeta functions on function fields.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.