Multi-band circularly polarized antenna for WLAN and WiMAX applications based on characteristic mode theory

IF 1.4 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yutong Yang, Zihang Qi, Yongxin Chen, Xiuping Li
{"title":"Multi-band circularly polarized antenna for WLAN and WiMAX applications based on characteristic mode theory","authors":"Yutong Yang, Zihang Qi, Yongxin Chen, Xiuping Li","doi":"10.1017/s1759078724000114","DOIUrl":null,"url":null,"abstract":"<p>A multi-band circularly polarized antenna is proposed for WLAN (2.4/5.3/5.8 GHz) and WiMAX (3.5 GHz) applications. The proposed antenna is constructed of a radiation patch and a reflecting metal ground. Characteristic mode theory is utilized to analyze the modes of the patch and based on these results the antenna is optimized. The −10 dB impedance bandwidths of the proposed antenna are 53.53% (2.4–4.15 GHz) and 47.28% (5.25–8.5 GHz), respectively. The antenna radiates left-handed circular polarization in the lower band and right-handed circular polarization in the upper band. A maximum gain of 10 dBic is achieved for the proposed antenna.</p>","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"66 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078724000114","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A multi-band circularly polarized antenna is proposed for WLAN (2.4/5.3/5.8 GHz) and WiMAX (3.5 GHz) applications. The proposed antenna is constructed of a radiation patch and a reflecting metal ground. Characteristic mode theory is utilized to analyze the modes of the patch and based on these results the antenna is optimized. The −10 dB impedance bandwidths of the proposed antenna are 53.53% (2.4–4.15 GHz) and 47.28% (5.25–8.5 GHz), respectively. The antenna radiates left-handed circular polarization in the lower band and right-handed circular polarization in the upper band. A maximum gain of 10 dBic is achieved for the proposed antenna.

基于特征模式理论的 WLAN 和 WiMAX 应用多波段圆极化天线
本文针对无线局域网(2.4/5.3/5.8 GHz)和 WiMAX(3.5 GHz)应用提出了一种多频带圆极化天线。该天线由辐射贴片和反射金属地板构成。利用特性模式理论分析了贴片的模式,并根据这些结果对天线进行了优化。拟议天线的 -10 dB 阻抗带宽分别为 53.53% (2.4-4.15 GHz) 和 47.28% (5.25-8.5 GHz)。该天线在低频段辐射左旋圆极化,在高频段辐射右旋圆极化。该天线的最大增益为 10 dBic。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Microwave and Wireless Technologies
International Journal of Microwave and Wireless Technologies ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
3.50
自引率
7.10%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信