Jing Li, Yu Wang, Jun Tao, Xiaodan Su, Feipeng Zhu, Wei Lu, Xiaolin Han, Meng Dang, Lixing Weng
{"title":"Mitochondria-Targeting and Oxygen Self-Supplying Eccentric Hollow Nanoplatform for Enhanced Breast Cancer Photodynamic Therapy","authors":"Jing Li, Yu Wang, Jun Tao, Xiaodan Su, Feipeng Zhu, Wei Lu, Xiaolin Han, Meng Dang, Lixing Weng","doi":"10.1155/2024/6618388","DOIUrl":null,"url":null,"abstract":"Photodynamic therapy (PDT) has received increasing attention for tumor therapy due to its minimal invasiveness and spatiotemporal selectivity. However, the poor targeting of photosensitizer and hypoxia of the tumor microenvironment limit the PDT efficacy. Herein, eccentric hollow mesoporous organic silica nanoparticles (EHMONs) are prepared by anisotropic encapsulation and hydrothermal etching for constructing PDT nanoplatforms with targeting and hypoxia-alleviating properties. The prepared EHMONs possess a unique eccentric hollow structure, a uniform size (300 nm), a large cavity, and ordered mesoporous channels (2.3 nm). The EHMONs are modified with the mitochondria-targeting molecule triphenylphosphine (CTPP) and photosensitizers chlorin e6 (Ce6). Oxygen-carrying compound perfluorocarbons (PFCs) are further loaded in the internal cavity of EHMONs. Hemolytic assays and <i>in vitro</i> toxicity experiments show that the EHMONs-Ce6-CTPP possesses very good biocompatibility and can target mitochondria of triple-negative breast cancer, thus increasing the accumulation of photosensitizers Ce6 at mitochondria after entering cancer cells. The EHMONs-Ce6-CTPP@PFCs with oxygen-carrying ability can alleviate hypoxia after entering in the cancer cell. Phantom and cellular experiments show that the EHMONs-Ce6-CTPP@PFCs produce more singlet oxygen reactive oxygen species (ROSs). Thus, in vitro and in vivo experiments demonstrated that the EHMONs-Ce6-CTPP@PFCs showed excellent treatment effects for triple-negative breast cancer. This research provides a new method for a targeting and oxygen-carrying nanoplatform for enhancing PDF effectiveness.","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"6 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinorganic Chemistry and Applications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2024/6618388","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Photodynamic therapy (PDT) has received increasing attention for tumor therapy due to its minimal invasiveness and spatiotemporal selectivity. However, the poor targeting of photosensitizer and hypoxia of the tumor microenvironment limit the PDT efficacy. Herein, eccentric hollow mesoporous organic silica nanoparticles (EHMONs) are prepared by anisotropic encapsulation and hydrothermal etching for constructing PDT nanoplatforms with targeting and hypoxia-alleviating properties. The prepared EHMONs possess a unique eccentric hollow structure, a uniform size (300 nm), a large cavity, and ordered mesoporous channels (2.3 nm). The EHMONs are modified with the mitochondria-targeting molecule triphenylphosphine (CTPP) and photosensitizers chlorin e6 (Ce6). Oxygen-carrying compound perfluorocarbons (PFCs) are further loaded in the internal cavity of EHMONs. Hemolytic assays and in vitro toxicity experiments show that the EHMONs-Ce6-CTPP possesses very good biocompatibility and can target mitochondria of triple-negative breast cancer, thus increasing the accumulation of photosensitizers Ce6 at mitochondria after entering cancer cells. The EHMONs-Ce6-CTPP@PFCs with oxygen-carrying ability can alleviate hypoxia after entering in the cancer cell. Phantom and cellular experiments show that the EHMONs-Ce6-CTPP@PFCs produce more singlet oxygen reactive oxygen species (ROSs). Thus, in vitro and in vivo experiments demonstrated that the EHMONs-Ce6-CTPP@PFCs showed excellent treatment effects for triple-negative breast cancer. This research provides a new method for a targeting and oxygen-carrying nanoplatform for enhancing PDF effectiveness.
期刊介绍:
Bioinorganic Chemistry and Applications is primarily devoted to original research papers, but also publishes review articles, editorials, and letter to the editor in the general field of bioinorganic chemistry and its applications. Its scope includes all aspects of bioinorganic chemistry, including bioorganometallic chemistry and applied bioinorganic chemistry. The journal welcomes papers relating to metalloenzymes and model compounds, metal-based drugs, biomaterials, biocatalysis and bioelectronics, metals in biology and medicine, metals toxicology and metals in the environment, metal interactions with biomolecules and spectroscopic applications.