Stability Analysis of SIRS Model considering Pulse Vaccination and Elimination Disturbance

IF 1.3 4区 数学 Q1 MATHEMATICS
Yanli Ma, Xuewu Zuo
{"title":"Stability Analysis of SIRS Model considering Pulse Vaccination and Elimination Disturbance","authors":"Yanli Ma, Xuewu Zuo","doi":"10.1155/2024/6617911","DOIUrl":null,"url":null,"abstract":"It is well known that many natural phenomena and human activities do exhibit impulsive effects in the fields of epidemiology. At the same time, compared with a single control strategy, it is obvious that the multiple control strategies are more beneficial to restrain the spread of infectious diseases. In this paper, we consider pulse vaccination and pulse elimination strategies at the same time and establish an SIRS epidemic model with standard incidence. Firstly, according to the stroboscopic mapping method of the discrete dynamical system, the disease-free <svg height=\"9.01194pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.96212 8.41168 9.01194\" width=\"8.41168pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> periodic solution of the model under the condition of pulse vaccination and pulse elimination is obtained. Secondly, the basic reproductive number <svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 13.1624 11.927\" width=\"13.1624pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"></path></g></svg> is defined, and the local asymptotic stability of the disease-free <svg height=\"9.01194pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.96212 8.41168 9.01194\" width=\"8.41168pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-85\"></use></g></svg> periodic solution is proved by Floquet theory for <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 24.295 11.927\" width=\"24.295pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.664,0)\"></path></g></svg><span></span><span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"27.8771838 -8.6359 6.422 11.927\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.927,0)\"></path></g></svg>.</span></span> Finally, based on the impulsive differential inequality theory, the global asymptotic stability of the disease-free <svg height=\"9.01194pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.96212 8.41168 9.01194\" width=\"8.41168pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-85\"></use></g></svg> periodic solution is given for <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 24.295 11.927\" width=\"24.295pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.664,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"27.8771838 -8.6359 6.422 11.927\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.927,0)\"><use xlink:href=\"#g113-50\"></use></g></svg>,</span></span> and the disease dies out eventually. The results show that in order to stop the disease epidemic, it is necessary to choose the appropriate vaccination rate and elimination rate and the appropriate impulsive period.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/6617911","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is well known that many natural phenomena and human activities do exhibit impulsive effects in the fields of epidemiology. At the same time, compared with a single control strategy, it is obvious that the multiple control strategies are more beneficial to restrain the spread of infectious diseases. In this paper, we consider pulse vaccination and pulse elimination strategies at the same time and establish an SIRS epidemic model with standard incidence. Firstly, according to the stroboscopic mapping method of the discrete dynamical system, the disease-free periodic solution of the model under the condition of pulse vaccination and pulse elimination is obtained. Secondly, the basic reproductive number is defined, and the local asymptotic stability of the disease-free periodic solution is proved by Floquet theory for . Finally, based on the impulsive differential inequality theory, the global asymptotic stability of the disease-free periodic solution is given for , and the disease dies out eventually. The results show that in order to stop the disease epidemic, it is necessary to choose the appropriate vaccination rate and elimination rate and the appropriate impulsive period.
考虑脉冲接种和消除干扰的 SIRS 模型稳定性分析
众所周知,在流行病学领域,许多自然现象和人类活动都会产生脉冲效应。同时,与单一控制策略相比,多重控制策略显然更有利于抑制传染病的传播。本文同时考虑了脉冲接种和脉冲消除策略,并建立了一个标准发病率的 SIRS 流行模型。首先,根据离散动力系统的频闪映射方法,得到模型在脉冲接种和脉冲消除条件下的无病周期解。其次,定义了基本繁殖数,并用 Floquet 理论证明了无病周期解的局部渐近稳定性,即......。最后,基于脉冲微分不等式理论,给出了Ⅳ级无病周期解的全局渐近稳定性,疾病最终消亡。结果表明,为了阻止疾病的流行,必须选择适当的疫苗接种率和消除率以及适当的脉冲周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信