{"title":"A global branch approach to normalized solutions for the Schrödinger equation","authors":"Louis Jeanjean , Jianjun Zhang , Xuexiu Zhong","doi":"10.1016/j.matpur.2024.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>We study the existence, non-existence and multiplicity of prescribed mass positive solutions to a Schrödinger equation of the form<span><span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mi>N</mi><mo>≥</mo><mn>1</mn><mo>.</mo></math></span></span></span> Our approach permits to handle in a unified way nonlinearities <span><math><mi>g</mi><mo>(</mo><mi>s</mi><mo>)</mo></math></span> which are either mass subcritical, mass critical or mass supercritical. Among its main ingredients is the study of the asymptotic behaviors of the positive solutions as <span><math><mi>λ</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> or <span><math><mi>λ</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span> and the existence of an unbounded continuum of solutions in <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span>.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"183 ","pages":"Pages 44-75"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000102/pdfft?md5=f6c2872a0f6dac1f94b8685209ca5ffc&pid=1-s2.0-S0021782424000102-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000102","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the existence, non-existence and multiplicity of prescribed mass positive solutions to a Schrödinger equation of the form Our approach permits to handle in a unified way nonlinearities which are either mass subcritical, mass critical or mass supercritical. Among its main ingredients is the study of the asymptotic behaviors of the positive solutions as or and the existence of an unbounded continuum of solutions in .
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.