Shi-Hai Wei, Bo Jing, Xue-Ying Zhang, Jin-Yu Liao, Hao Li, Li-Xing You, Zhen Wang, You Wang, Guang-Wei Deng, Hai-Zhi Song, Daniel Oblak, Guang-Can Guo, Qiang Zhou
{"title":"Quantum storage of 1650 modes of single photons at telecom wavelength","authors":"Shi-Hai Wei, Bo Jing, Xue-Ying Zhang, Jin-Yu Liao, Hao Li, Li-Xing You, Zhen Wang, You Wang, Guang-Wei Deng, Hai-Zhi Song, Daniel Oblak, Guang-Can Guo, Qiang Zhou","doi":"10.1038/s41534-024-00812-1","DOIUrl":null,"url":null,"abstract":"<p>To advance the full potential of quantum networks one should be able to distribute quantum resources over long distances at appreciable rates. As a consequence, all components in such networks need to have large multimode capacity to manipulate photonic quantum states. Towards this end, a photonic quantum memory with a large multimode capacity, especially one operating at telecom wavelength, remains an important challenge. Here we optimize the preparation of atomic frequency combs and demonstrate a spectro-temporally multiplexed quantum memory in a 10-m-long cryogenically cooled erbium doped silica fibre. Our multiplexing storage has five spectral channels - each 10 GHz wide with 5 GHz separation - with up to 330 temporal modes in each, thus resulting in a simultaneous storage of 1,650 modes of heralded single photons with a 1000-fold increasing in coincidence detection rate with respect to single mode storage. Our results could pave the way for high speed quantum networks compatible with the infrastructure of fibre optical communication.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"15 3 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00812-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
To advance the full potential of quantum networks one should be able to distribute quantum resources over long distances at appreciable rates. As a consequence, all components in such networks need to have large multimode capacity to manipulate photonic quantum states. Towards this end, a photonic quantum memory with a large multimode capacity, especially one operating at telecom wavelength, remains an important challenge. Here we optimize the preparation of atomic frequency combs and demonstrate a spectro-temporally multiplexed quantum memory in a 10-m-long cryogenically cooled erbium doped silica fibre. Our multiplexing storage has five spectral channels - each 10 GHz wide with 5 GHz separation - with up to 330 temporal modes in each, thus resulting in a simultaneous storage of 1,650 modes of heralded single photons with a 1000-fold increasing in coincidence detection rate with respect to single mode storage. Our results could pave the way for high speed quantum networks compatible with the infrastructure of fibre optical communication.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.