Microstructure Evolution and First-Order Reversal Curve Analysis of the Interphase Coupling in SmCo Thick Film

IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Oksana Koplak;Federico Maspero;Alejandro Plaza;Andrea Del Giacco;Maria Cocconcelli;Riccardo Bertacco
{"title":"Microstructure Evolution and First-Order Reversal Curve Analysis of the Interphase Coupling in SmCo Thick Film","authors":"Oksana Koplak;Federico Maspero;Alejandro Plaza;Andrea Del Giacco;Maria Cocconcelli;Riccardo Bertacco","doi":"10.1109/LMAG.2023.3344026","DOIUrl":null,"url":null,"abstract":"Thick SmCo films of 500 nm thickness were deposited by radio frequency sputtering in W/SmCo/W structures on a Si substrate. After annealing at 650–750 °C, the as-grown soft amorphous structure transforms into a mixture of crystalline Sm\n<sub>2</sub>\nCo\n<sub>17</sub>\n and SmCo\n<sub>5</sub>\n hard magnetic phases. Annealing at 650 °C leads to film crystallization with an average grain size of 64 nm, coercivity of 0.5 T, and remanence magnetization of about 0.5 T for a maximum applied field of 2 T. The remanence magnetization decreases by 20% upon annealing at 750 °C, whereas the average crystalline size and coercivity increase up to 73 nm and 1.1 T, respectively. Series of the first-order reversal curves recorded in the samples that were annealed at 650 °C and 750 °C demonstrate redistribution of the switching fields between the softer (Sm\n<sub>2</sub>\nCo\n<sub>17)</sub>\n and harder (SmCo\n<sub>5</sub>\n) phases, depending on the strength of interphase interaction. Overall, the higher remanence and sizable coercivity of films annealed at 650 °C make them good candidates for the fabrication of micromagnets to be integrated in microelectromechanical systems.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10363408/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Thick SmCo films of 500 nm thickness were deposited by radio frequency sputtering in W/SmCo/W structures on a Si substrate. After annealing at 650–750 °C, the as-grown soft amorphous structure transforms into a mixture of crystalline Sm 2 Co 17 and SmCo 5 hard magnetic phases. Annealing at 650 °C leads to film crystallization with an average grain size of 64 nm, coercivity of 0.5 T, and remanence magnetization of about 0.5 T for a maximum applied field of 2 T. The remanence magnetization decreases by 20% upon annealing at 750 °C, whereas the average crystalline size and coercivity increase up to 73 nm and 1.1 T, respectively. Series of the first-order reversal curves recorded in the samples that were annealed at 650 °C and 750 °C demonstrate redistribution of the switching fields between the softer (Sm 2 Co 17) and harder (SmCo 5 ) phases, depending on the strength of interphase interaction. Overall, the higher remanence and sizable coercivity of films annealed at 650 °C make them good candidates for the fabrication of micromagnets to be integrated in microelectromechanical systems.
钐钴厚膜中相间耦合的微观结构演变和一阶反转曲线分析
通过射频溅射法在硅衬底上沉积了 W/SmCo/W 结构的 500 nm 厚钐钴薄膜。在 650-750 °C 退火后,生长的软质无定形结构转变为结晶 Sm2Co17 和 SmCo5 硬磁相的混合物。在 650 °C 退火后,薄膜结晶,平均晶粒大小为 64 nm,矫顽力为 0.5 T,在最大外加磁场为 2 T 时,剩磁约为 0.5 T;在 750 °C 退火后,剩磁降低了 20%,而平均晶粒大小和矫顽力则分别增加到 73 nm 和 1.1 T。在 650 ℃ 和 750 ℃ 下退火的样品记录的一阶反转曲线系列表明,开关场在较软(Sm2Co17)和较硬(SmCo5)相之间重新分布,这取决于相间相互作用的强度。总之,在 650 ℃ 下退火的薄膜具有较高的剩磁和相当大的矫顽力,是制造集成到微机电系统中的微型磁体的理想材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Magnetics Letters
IEEE Magnetics Letters PHYSICS, APPLIED-
CiteScore
2.40
自引率
0.00%
发文量
37
期刊介绍: IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest. IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信