How do adaptive learning expectations rationalize stronger monetary policy response in Brazil?

Allan Dizioli, Hou Wang
{"title":"How do adaptive learning expectations rationalize stronger monetary policy response in Brazil?","authors":"Allan Dizioli,&nbsp;Hou Wang","doi":"10.1016/j.latcb.2024.100119","DOIUrl":null,"url":null,"abstract":"<div><p>This paper estimates a standard Dynamic Stochastic General Equilibrium (DSGE) model that includes a wage and price Phillips curves with different expectation formation processes for Brazil and the USA. Other than the standard rational expectation process, we also use a limited rationality process, the adaptative learning model. In this context, we show that the separate inclusion of a labor market in the model helps to anchor inflation even in a situation of adaptive expectations, a positive output gap and inflation above target. The estimation results show that the adaptive learning model does a better job in fitting the data in Brazil. In addition, the estimation shows that expectations are more backward-looking and started to drift away sooner in 2021 in Brazil than in the USA. We then conduct optimal policy exercises that prescribe front-loading monetary policy tightening and easing earlier than the estimated monetary policy rule in the context of positive output gaps and inflation far above the central bank target.</p></div>","PeriodicalId":100867,"journal":{"name":"Latin American Journal of Central Banking","volume":"5 1","pages":"Article 100119"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666143824000012/pdfft?md5=b0249be0420f4c216a6f04193c48b16d&pid=1-s2.0-S2666143824000012-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Central Banking","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666143824000012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper estimates a standard Dynamic Stochastic General Equilibrium (DSGE) model that includes a wage and price Phillips curves with different expectation formation processes for Brazil and the USA. Other than the standard rational expectation process, we also use a limited rationality process, the adaptative learning model. In this context, we show that the separate inclusion of a labor market in the model helps to anchor inflation even in a situation of adaptive expectations, a positive output gap and inflation above target. The estimation results show that the adaptive learning model does a better job in fitting the data in Brazil. In addition, the estimation shows that expectations are more backward-looking and started to drift away sooner in 2021 in Brazil than in the USA. We then conduct optimal policy exercises that prescribe front-loading monetary policy tightening and easing earlier than the estimated monetary policy rule in the context of positive output gaps and inflation far above the central bank target.

适应性学习预期如何合理化巴西更强有力的货币政策反应?
本文估算了一个标准的动态随机一般均衡(DSGE)模型,该模型包括工资和价格菲利普斯曲线,巴西和美国的预期形成过程各不相同。除标准理性预期过程外,我们还使用了有限理性过程,即适应性学习模型。在这种情况下,我们表明,在模型中单独加入劳动力市场有助于锚定通胀,即使在适应性预期、正产出缺口和通胀高于目标的情况下也是如此。估计结果表明,自适应学习模型能更好地拟合巴西的数据。此外,估计结果表明,巴西的预期更具后瞻性,在 2021 年开始偏离的时间早于美国。然后,我们进行了最优政策演练,在正产出缺口和通胀率远高于央行目标的情况下,比估计的货币政策规则更早地规定了前置的货币政策紧缩和放松。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信