In-silico approaches to assessing multiple high-level drug-drug and drug-disease adverse drug effects.

Xuan Xu, Jim E Riviere, Shahzad Raza, Nuwan Indika Millagaha Gedara, Remya Ampadi Ramachandran, Lisa A Tell, Gerald J Wyckoff, Majid Jaberi-Douraki
{"title":"<i>In-silico</i> approaches to assessing multiple high-level drug-drug and drug-disease adverse drug effects.","authors":"Xuan Xu, Jim E Riviere, Shahzad Raza, Nuwan Indika Millagaha Gedara, Remya Ampadi Ramachandran, Lisa A Tell, Gerald J Wyckoff, Majid Jaberi-Douraki","doi":"10.1080/17425255.2023.2299337","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Pharmacovigilance plays a pivotal role in monitoring adverse events (AEs) related to chemical substances in human/animal populations. With increasing spontaneous-reporting systems, researchers turned to <i>in-silico</i> approaches to efficiently analyze drug safety profiles. Here, we review <i>in-silico</i> methods employed for assessing multiple drug-drug/drug-disease AEs covered by comparative analyses and visualization strategies.</p><p><strong>Areas covered: </strong>Disproportionality, involving multi-stage statistical methodologies and data processing, identifies safety signals among drug-AE pairs. By stratifying data based on disease indications/demographics, researchers address confounders and assess drug safety. Comparative analyses, including clustering techniques and visualization techniques, assess drug similarities, patterns, and trends, calculate correlations, and identify distinct toxicities. Furthermore, we conducted a thorough Scopus search on 'pharmacovigilance,' yielding 5,836 publications spanning 2003 to 2023.</p><p><strong>Expert opinion: </strong>Pharmacovigilance relies on diverse data sources, presenting challenges in the integration of <i>in-silico</i> approaches and requiring compliance with regulations and AI adoption. Systematic use of statistical analyses enables identifications of potential risks with drugs. Frequentist and Bayesian methods are used in disproportionalities, each with its strengths and weaknesses. Integration of pharmacogenomics with pharmacovigilance enables personalized medicine, with AI further enhancing patient engagement. This multidisciplinary approach holds promise, improving drug efficacy and safety, and should be a core mission of One-Health studies.</p>","PeriodicalId":94005,"journal":{"name":"Expert opinion on drug metabolism & toxicology","volume":" ","pages":"579-592"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug metabolism & toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425255.2023.2299337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Pharmacovigilance plays a pivotal role in monitoring adverse events (AEs) related to chemical substances in human/animal populations. With increasing spontaneous-reporting systems, researchers turned to in-silico approaches to efficiently analyze drug safety profiles. Here, we review in-silico methods employed for assessing multiple drug-drug/drug-disease AEs covered by comparative analyses and visualization strategies.

Areas covered: Disproportionality, involving multi-stage statistical methodologies and data processing, identifies safety signals among drug-AE pairs. By stratifying data based on disease indications/demographics, researchers address confounders and assess drug safety. Comparative analyses, including clustering techniques and visualization techniques, assess drug similarities, patterns, and trends, calculate correlations, and identify distinct toxicities. Furthermore, we conducted a thorough Scopus search on 'pharmacovigilance,' yielding 5,836 publications spanning 2003 to 2023.

Expert opinion: Pharmacovigilance relies on diverse data sources, presenting challenges in the integration of in-silico approaches and requiring compliance with regulations and AI adoption. Systematic use of statistical analyses enables identifications of potential risks with drugs. Frequentist and Bayesian methods are used in disproportionalities, each with its strengths and weaknesses. Integration of pharmacogenomics with pharmacovigilance enables personalized medicine, with AI further enhancing patient engagement. This multidisciplinary approach holds promise, improving drug efficacy and safety, and should be a core mission of One-Health studies.

评估药物对药物和药物对疾病的多种高水平不良反应的实验室方法。
导言:药物警戒在监测人类/动物群体中与化学物质相关的不良事件(AEs)方面发挥着举足轻重的作用。随着自发报告系统的不断增加,研究人员转而采用了硅学方法来有效分析药物安全性概况。在此,我们回顾了通过比较分析和可视化策略评估多种药物-药物/药物-疾病 AE 所采用的机器内方法:比例失调法涉及多阶段统计方法和数据处理,可识别药物-AE 对之间的安全信号。通过根据疾病适应症/人口统计学对数据进行分层,研究人员可以解决混杂因素并评估药物安全性。包括聚类技术和可视化技术在内的比较分析可评估药物的相似性、模式和趋势,计算相关性并识别不同的毒性。此外,我们还对 "药物警戒 "进行了全面的Scopus搜索,共搜索到2003年至2023年间的5836篇论文:药物警戒依赖于不同的数据源,这给集成微观方法带来了挑战,同时也要求遵守法规和采用人工智能。系统地使用统计分析可以识别药物的潜在风险。频数法和贝叶斯法的使用不成比例,各有优缺点。药物基因组学与药物警戒的结合实现了个性化医疗,而人工智能则进一步提高了患者的参与度。这种多学科方法有望提高药物疗效和安全性,应成为 "一体健康 "研究的核心任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信