A Ca2+ sensor BraCBL1.2 involves in BraCRa-mediated clubroot resistance in Chinese cabbage.

IF 7.6 Q1 GENETICS & HEREDITY
园艺研究(英文) Pub Date : 2023-12-13 eCollection Date: 2024-01-01 DOI:10.1093/hr/uhad261
Yinglan Piao, Shizhen Li, Yiduo Chen, Sisi Zhao, Zhongyun Piao, Haiping Wang
{"title":"A Ca<sup>2+</sup> sensor BraCBL1.2 involves in BraCRa-mediated clubroot resistance in Chinese cabbage.","authors":"Yinglan Piao, Shizhen Li, Yiduo Chen, Sisi Zhao, Zhongyun Piao, Haiping Wang","doi":"10.1093/hr/uhad261","DOIUrl":null,"url":null,"abstract":"<p><p>Clubroot disease caused by <i>Plasmodiophora brassicae</i> (<i>P. brassicae</i>) severely threatens the cultivation of Cruciferous plants, especially Chinese cabbage. Recently, resistance genes in plants have been reported to encode for a Ca<sup>2+</sup>-permeable channel in the plasma membrane, which can mediate the cytosolic Ca<sup>2+</sup> increase in plant cells upon pathogen attack. However, the downstream Ca<sup>2+</sup> sensor and decoder are still unknown. In this study, we identified the virulent and avirulent <i>P. brassicae</i> isolates (Pbs) of two near isogenic lines, CR 3-2 and CS 3-2, with CR 3-2 harboring clubroot resistant gene <i>BraCRa</i>. The transcriptomic analysis was then conducted with CR 3-2 after inoculating with virulent isolate PbE and avirulent isolate Pb4. From the differentially expressed genes of transcriptomic data, we identified a Ca<sup>2+</sup>-sensor encoding gene, <i>BraCBL1</i>.<i>2</i>, that was highly induced in CR 3-2 during infection by Pb4 but not by PbE. Moreover, GUS histochemical staining and subcellular localization analysis revealed that <i>BraCBL1</i>.<i>2</i> was specifically expressed in the root hair cells of <i>Arabidopsis</i> and encoded a putative Ca<sup>2+</sup> sensor localized in the plasma membrane. We also developed an assay to investigate the BraCRa-mediated hypersensitive response (HR) in tobacco leaves. The results suggest that BraCBL1.2 is involved in the BraCRa-mediated plant ETI immune response against <i>P. brassicae</i>. In addition, we verified that overexpression of <i>BraCBL1.2</i> enhanced clubroot resistance in <i>Arabidopsis</i>. Collectively, our data identified the involvement of a Ca<sup>2+</sup> sensor in BraCRa-mediated clubroot resistance in Chinese cabbage, providing a theoretical basis for further research on the resistance of Chinese cabbage to <i>P. brassicae</i>.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 1","pages":"uhad261"},"PeriodicalIF":7.6000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10828780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"园艺研究(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.1093/hr/uhad261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Clubroot disease caused by Plasmodiophora brassicae (P. brassicae) severely threatens the cultivation of Cruciferous plants, especially Chinese cabbage. Recently, resistance genes in plants have been reported to encode for a Ca2+-permeable channel in the plasma membrane, which can mediate the cytosolic Ca2+ increase in plant cells upon pathogen attack. However, the downstream Ca2+ sensor and decoder are still unknown. In this study, we identified the virulent and avirulent P. brassicae isolates (Pbs) of two near isogenic lines, CR 3-2 and CS 3-2, with CR 3-2 harboring clubroot resistant gene BraCRa. The transcriptomic analysis was then conducted with CR 3-2 after inoculating with virulent isolate PbE and avirulent isolate Pb4. From the differentially expressed genes of transcriptomic data, we identified a Ca2+-sensor encoding gene, BraCBL1.2, that was highly induced in CR 3-2 during infection by Pb4 but not by PbE. Moreover, GUS histochemical staining and subcellular localization analysis revealed that BraCBL1.2 was specifically expressed in the root hair cells of Arabidopsis and encoded a putative Ca2+ sensor localized in the plasma membrane. We also developed an assay to investigate the BraCRa-mediated hypersensitive response (HR) in tobacco leaves. The results suggest that BraCBL1.2 is involved in the BraCRa-mediated plant ETI immune response against P. brassicae. In addition, we verified that overexpression of BraCBL1.2 enhanced clubroot resistance in Arabidopsis. Collectively, our data identified the involvement of a Ca2+ sensor in BraCRa-mediated clubroot resistance in Chinese cabbage, providing a theoretical basis for further research on the resistance of Chinese cabbage to P. brassicae.

Ca2+传感器BraCBL1.2参与了BraCRa介导的大白菜抗球根病的过程。
由黄铜病菌(Plasmodiophora brassicae,P. brassicae)引起的球根病严重威胁着十字花科植物(尤其是大白菜)的种植。最近有报道称,植物的抗性基因编码质膜上的 Ca2+ 渗透通道,该通道可在病原体侵袭时介导植物细胞中的胞质 Ca2+ 上升。然而,下游的 Ca2+ 传感器和解码器仍然未知。在本研究中,我们鉴定了 CR 3-2 和 CS 3-2 这两个近似同源品系中的黄铜病菌(Pbs)毒力和无毒力分离株,其中 CR 3-2 含有抗球根病基因 BraCRa。在接种带毒分离物 PbE 和不带毒分离物 Pb4 后,对 CR 3-2 进行转录组分析。从转录组数据的差异表达基因中,我们发现了一个编码 Ca2+ 传感器的基因 BraCBL1.2,该基因在 Pb4 感染 CR 3-2 时被高度诱导,而在 PbE 感染 CR 3-2 时则没有被高度诱导。此外,GUS 组织化学染色和亚细胞定位分析表明,BraCBL1.2 在拟南芥根毛细胞中特异表达,并编码一种定位在质膜上的假定 Ca2+ 传感器。我们还开发了一种检测方法来研究 BraCRa 介导的烟草叶片超敏反应(HR)。结果表明,BraCBL1.2参与了BraCRa介导的植物ETI免疫反应,对抗铜锈蝇。此外,我们还验证了过表达 BraCBL1.2 能增强拟南芥的抗球根病能力。总之,我们的数据确定了Ca2+传感器参与了BraCRa介导的大白菜抗球根病的过程,为进一步研究大白菜对黄铜病菌的抗性提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信