{"title":"Genetic testing for familial hypercholesterolemia.","authors":"Yiyi Zhang, Sarah D de Ferranti, Andrew E Moran","doi":"10.1097/MOL.0000000000000925","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Despite familial hypercholesterolemia (FH) being the most common genetic cause of cardiovascular disease (CVD), genetic testing is rarely utilized in the US. This review summarizes what is known about the clinical utility of genetic testing and its role in the diagnosis and screening of FH.</p><p><strong>Recent findings: </strong>The presence of an FH-causative variant is associated with a substantially higher risk of CVD, even when low-density lipoprotein cholesterol (LDL-C) levels are only modestly elevated. Genetic testing can facilitate the identification of FH cases who may be missed by clinical diagnostic criteria, improve risk stratification beyond LDL-C and family history, guide treatment decisions, and improve treatment initiation and adherence. Genetic testing can be incorporated into FH screening and diagnosis algorithms, including cascade, targeted, and universal screening. Integrating genetic testing into cascade screening can enhance the effectiveness of the process. Several models of universal FH screening with coordinated genetic and lipid testing are feasible and effective.</p><p><strong>Summary: </strong>More systematic integration of genetic testing into FH diagnosis and screening can significantly reduce the burden of this condition through early detection and treatment. Further pragmatic implementation studies are needed to determine how to more effectively and affordably integrate genetic testing into clinical lipid screening programs.</p>","PeriodicalId":11109,"journal":{"name":"Current opinion in lipidology","volume":" ","pages":"93-100"},"PeriodicalIF":3.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10932851/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in lipidology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MOL.0000000000000925","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: Despite familial hypercholesterolemia (FH) being the most common genetic cause of cardiovascular disease (CVD), genetic testing is rarely utilized in the US. This review summarizes what is known about the clinical utility of genetic testing and its role in the diagnosis and screening of FH.
Recent findings: The presence of an FH-causative variant is associated with a substantially higher risk of CVD, even when low-density lipoprotein cholesterol (LDL-C) levels are only modestly elevated. Genetic testing can facilitate the identification of FH cases who may be missed by clinical diagnostic criteria, improve risk stratification beyond LDL-C and family history, guide treatment decisions, and improve treatment initiation and adherence. Genetic testing can be incorporated into FH screening and diagnosis algorithms, including cascade, targeted, and universal screening. Integrating genetic testing into cascade screening can enhance the effectiveness of the process. Several models of universal FH screening with coordinated genetic and lipid testing are feasible and effective.
Summary: More systematic integration of genetic testing into FH diagnosis and screening can significantly reduce the burden of this condition through early detection and treatment. Further pragmatic implementation studies are needed to determine how to more effectively and affordably integrate genetic testing into clinical lipid screening programs.
期刊介绍:
With its easy-to-digest reviews on important advances in world literature, Current Opinion in Lipidology offers expert evaluation on a wide range of topics from six key disciplines including nutrition and metabolism, genetics and molecular biology, and hyperlipidaemia and cardiovascular disease. Published bimonthly, each issue covers in detail the most pertinent advances in these fields from the previous year. This is supplemented by a section of Bimonthly Updates, which deliver an insight into new developments at the cutting edge of the disciplines covered in the journal.