Wenqin Ding, Xingyu Shao, Sheng Ding, Yinzhou Du, Weiyong Hong, Qingliang Yang, Ying Song, Gensheng Yang
{"title":"Natural herb wormwood-based microneedle array for wound healing.","authors":"Wenqin Ding, Xingyu Shao, Sheng Ding, Yinzhou Du, Weiyong Hong, Qingliang Yang, Ying Song, Gensheng Yang","doi":"10.1007/s13346-024-01520-1","DOIUrl":null,"url":null,"abstract":"<p><p>Artemisia argyi, commonly known as wormwood, is a traditional Chinese herbal food and medicine celebrated for its notable antibacterial and anti-inflammatory properties. This study explores a novel delivery method for wormwood, aiming for more convenient and versatile applications. Specifically, we present the first investigation into combining wormwood with microstructures to create a microneedle (MN) patch for wound healing. The wormwood microneedle (WMN) patch is formulated with milled wormwood sap, calcium carbonate, and sodium hyaluronate. The addition of 0.3% (w/v) sodium hyaluronate enhances the mechanical strength of the WMN patch. Pectin, derived from wormwood, is combined with calcium carbonate to create a gelatinous and solidified substance. The WMN patch exhibits a well-defined shape and sufficient mechanical strength to penetrate the epidermis, as confirmed by our results. In vitro experiments demonstrate the biocompatibility of the WMN patch with fibroblasts and highlight its antibacterial and anti-inflammatory properties. Furthermore, the patch facilitates collagen deposition at the wound site. In an excisional rat model, the WMN patch significantly accelerates the wound closure rate compared to the control group. Our findings suggest that the WMN patch has the potential to serve as a natural treatment for wound healing. Additionally, this approach can be extended to other biologically active substances with similar physiochemical characteristics in future applications.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01520-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Artemisia argyi, commonly known as wormwood, is a traditional Chinese herbal food and medicine celebrated for its notable antibacterial and anti-inflammatory properties. This study explores a novel delivery method for wormwood, aiming for more convenient and versatile applications. Specifically, we present the first investigation into combining wormwood with microstructures to create a microneedle (MN) patch for wound healing. The wormwood microneedle (WMN) patch is formulated with milled wormwood sap, calcium carbonate, and sodium hyaluronate. The addition of 0.3% (w/v) sodium hyaluronate enhances the mechanical strength of the WMN patch. Pectin, derived from wormwood, is combined with calcium carbonate to create a gelatinous and solidified substance. The WMN patch exhibits a well-defined shape and sufficient mechanical strength to penetrate the epidermis, as confirmed by our results. In vitro experiments demonstrate the biocompatibility of the WMN patch with fibroblasts and highlight its antibacterial and anti-inflammatory properties. Furthermore, the patch facilitates collagen deposition at the wound site. In an excisional rat model, the WMN patch significantly accelerates the wound closure rate compared to the control group. Our findings suggest that the WMN patch has the potential to serve as a natural treatment for wound healing. Additionally, this approach can be extended to other biologically active substances with similar physiochemical characteristics in future applications.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.