Matthew D Yates, Rebecca L Mickol, Amelia Vignola, Jeffrey W Baldwin, Sarah M Glaven, Leonard M Tender
{"title":"Performance of a combined electrotrophic and electrogenic biofilm operated under long-term, continuous cycling.","authors":"Matthew D Yates, Rebecca L Mickol, Amelia Vignola, Jeffrey W Baldwin, Sarah M Glaven, Leonard M Tender","doi":"10.1007/s10529-023-03450-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Evaluate electrochemically active biofilms as high energy density rechargeable microbial batteries toward providing persistent power in applications where traditional battery technology is limiting (, remote monitoring applications).</p><p><strong>Results: </strong>Here we demonstrated that an electrochemically active biofilm was able to store and release electrical charge for alternating charge/discharge cycles of up to 24 h periodicity (50% duty cycle) with no significant decrease in average current density (0.16 ± 0.04 A/m<sup>2</sup>) for over 600 days. However, operation at 24 h periodicity for > 50 days resulted in a sharp decrease in the current to nearly zero. This current crash was recoverable by decreasing the periodicity. Overall, the coulombic efficiency remained near unity within experimental error (102 ± 3%) for all of the tested cycling periods. Electrochemical characterization here suggests that electron transfer occurs through multiple routes, likely a mixture of direct and mediated mechanisms.</p><p><strong>Conclusions: </strong>These results indicate that bidirectional electrogenic/electrotrophic biofilms are capable of efficient charge storage/release over a wide range of cycling frequency and may eventually enable development of sustainable, high energy density rechargeable batteries.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"213-221"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-023-03450-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Evaluate electrochemically active biofilms as high energy density rechargeable microbial batteries toward providing persistent power in applications where traditional battery technology is limiting (, remote monitoring applications).
Results: Here we demonstrated that an electrochemically active biofilm was able to store and release electrical charge for alternating charge/discharge cycles of up to 24 h periodicity (50% duty cycle) with no significant decrease in average current density (0.16 ± 0.04 A/m2) for over 600 days. However, operation at 24 h periodicity for > 50 days resulted in a sharp decrease in the current to nearly zero. This current crash was recoverable by decreasing the periodicity. Overall, the coulombic efficiency remained near unity within experimental error (102 ± 3%) for all of the tested cycling periods. Electrochemical characterization here suggests that electron transfer occurs through multiple routes, likely a mixture of direct and mediated mechanisms.
Conclusions: These results indicate that bidirectional electrogenic/electrotrophic biofilms are capable of efficient charge storage/release over a wide range of cycling frequency and may eventually enable development of sustainable, high energy density rechargeable batteries.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.