Bai-Wen Fu, Lian Xu, Mei-Xia Zheng, Yan Shi, Yu-Jing Zhu
{"title":"Engineering of Bacillus thuringiensis Cry2Ab toxin for improved insecticidal activity.","authors":"Bai-Wen Fu, Lian Xu, Mei-Xia Zheng, Yan Shi, Yu-Jing Zhu","doi":"10.1186/s13568-024-01669-5","DOIUrl":null,"url":null,"abstract":"<p><p>Bacillus thuringiensis Cry2Ab toxin was a widely used bioinsecticide to control lepidopteran pests all over the world. In the present study, engineering of Bacillus thuringiensis Cry2Ab toxin was performed for improved insecticidal activity using site-specific saturation mutation. Variants L183I were screened with lower LC<sub>50</sub> (0.129 µg/cm<sup>2</sup>) against P. xylostella when compared to wild-type Cry2Ab (0.267 µg/cm<sup>2</sup>). To investigate the molecular mechanism behind the enhanced activity of variant L183I, the activation, oligomerization and pore-formation activities of L183I were evaluated, using wild-type Cry2Ab as a control. The results demonstrated that the proteolytic activation of L183I was the same as that of wild-type Cry2Ab. However, variant L183I displayed higher oligomerization and pore-formation activities, which was consistence with its increased insecticidal activity. The current study demonstrated that the insecticidal activity of Cry2Ab toxin could be assessed using oligomerization and pore-formation activities, and the screened variant L183I with improved activity might contribute to Cry2Ab toxin's future application.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834393/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01669-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacillus thuringiensis Cry2Ab toxin was a widely used bioinsecticide to control lepidopteran pests all over the world. In the present study, engineering of Bacillus thuringiensis Cry2Ab toxin was performed for improved insecticidal activity using site-specific saturation mutation. Variants L183I were screened with lower LC50 (0.129 µg/cm2) against P. xylostella when compared to wild-type Cry2Ab (0.267 µg/cm2). To investigate the molecular mechanism behind the enhanced activity of variant L183I, the activation, oligomerization and pore-formation activities of L183I were evaluated, using wild-type Cry2Ab as a control. The results demonstrated that the proteolytic activation of L183I was the same as that of wild-type Cry2Ab. However, variant L183I displayed higher oligomerization and pore-formation activities, which was consistence with its increased insecticidal activity. The current study demonstrated that the insecticidal activity of Cry2Ab toxin could be assessed using oligomerization and pore-formation activities, and the screened variant L183I with improved activity might contribute to Cry2Ab toxin's future application.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.