{"title":"Improved uniform error bounds on parareal exponential algorithm for highly oscillatory systems","authors":"Bin Wang, Yaolin Jiang","doi":"10.1007/s10543-023-01005-6","DOIUrl":null,"url":null,"abstract":"<p>For the well known parareal algorithm, we formulate and analyse a novel class of parareal exponential schemes with improved uniform accuracy for highly oscillatory system <span>\\(\\ddot{q}+\\frac{1}{\\varepsilon ^2}M q =\\frac{1}{\\varepsilon ^{\\mu }}f(q)\\)</span> with <span>\\(\\mu =0\\)</span> or 1. The solution of this considered system propagates waves with wavelength at <span>\\(\\mathcal {O} (\\varepsilon )\\)</span> in time and the value of <span>\\(\\mu \\)</span> corresponds to the strength of nonlinearity. This brings significantly numerical burden in scientific computation for highly oscillatory systems with <span>\\(0<\\varepsilon \\ll 1\\)</span>. The new proposed algorithm is formulated by using some reformulation approaches to the problem, Fourier pseudo-spectral methods, and parareal exponential integrators. The fast Fourier transform is incorporated in the implementation. We rigorously study the convergence, showing that for nonlinear systems, the algorithm has improved uniform accuracy <span>\\(\\mathcal {O}\\big ( \\varepsilon ^{(2k+3)(1-\\mu )}\\Delta t^{2k+2}+\\varepsilon ^{5(1-\\mu )}\\delta t^4\\big )\\)</span> in the position and <span>\\(\\mathcal {O}\\big ( \\varepsilon ^{(2k+3)(1-\\mu )-1}\\Delta t^{2k+2}+\\varepsilon ^{4-5\\mu }\\delta t^4\\big )\\)</span> in the momenta, where <i>k</i> is the number of parareal iterations, and <span>\\(\\Delta t\\)</span> and <span>\\(\\delta t\\)</span> are two time stepsizes used in the algorithm. The energy conservation is also discussed and the algorithm is shown to have an improved energy conservation. Numerical experiments are provided and the numerical results demonstrate the improved uniform accuracy and improved energy conservation of the obtained integrator through four Hamiltonian differential equations including nonlinear wave equations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-023-01005-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For the well known parareal algorithm, we formulate and analyse a novel class of parareal exponential schemes with improved uniform accuracy for highly oscillatory system \(\ddot{q}+\frac{1}{\varepsilon ^2}M q =\frac{1}{\varepsilon ^{\mu }}f(q)\) with \(\mu =0\) or 1. The solution of this considered system propagates waves with wavelength at \(\mathcal {O} (\varepsilon )\) in time and the value of \(\mu \) corresponds to the strength of nonlinearity. This brings significantly numerical burden in scientific computation for highly oscillatory systems with \(0<\varepsilon \ll 1\). The new proposed algorithm is formulated by using some reformulation approaches to the problem, Fourier pseudo-spectral methods, and parareal exponential integrators. The fast Fourier transform is incorporated in the implementation. We rigorously study the convergence, showing that for nonlinear systems, the algorithm has improved uniform accuracy \(\mathcal {O}\big ( \varepsilon ^{(2k+3)(1-\mu )}\Delta t^{2k+2}+\varepsilon ^{5(1-\mu )}\delta t^4\big )\) in the position and \(\mathcal {O}\big ( \varepsilon ^{(2k+3)(1-\mu )-1}\Delta t^{2k+2}+\varepsilon ^{4-5\mu }\delta t^4\big )\) in the momenta, where k is the number of parareal iterations, and \(\Delta t\) and \(\delta t\) are two time stepsizes used in the algorithm. The energy conservation is also discussed and the algorithm is shown to have an improved energy conservation. Numerical experiments are provided and the numerical results demonstrate the improved uniform accuracy and improved energy conservation of the obtained integrator through four Hamiltonian differential equations including nonlinear wave equations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.