Modeling Extreme Precipitation Data in a Mining Area

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ourania-Anna Lymperi, Emmanouil A. Varouchakis
{"title":"Modeling Extreme Precipitation Data in a Mining Area","authors":"Ourania-Anna Lymperi, Emmanouil A. Varouchakis","doi":"10.1007/s11004-023-10126-1","DOIUrl":null,"url":null,"abstract":"<p>In recent decades, extreme precipitation events have increased in frequency and intensity in Greece and across regions of the Mediterranean, with significant environmental and socioeconomic impacts. Therefore, extensive statistical analysis of the extreme rainfall characteristics on a dense temporal scale is crucial for areas with important economic activity. For this reason, this paper uses the daily precipitation measurements of four meteorological stations in a mining area of northeastern Chalkidiki peninsula from 2006 to 2021. Three statistical approaches were carried out to develop the best-fitting probability distribution for annual extreme precipitation conditions, using the maximum likelihood method for parameter estimation: the block maxima of the generalized extreme value (GEV) distribution and the peak over threshold of the generalized Pareto distribution (GPD) based on extreme value theory (EVT), and the gamma distribution. Based upon this fitting distribution procedure, return periods for the extreme precipitation values were calculated. Results indicate that EVT distributions satisfactorily fit extreme precipitation, with GPD being the most appropriate, and lead to similar conclusions regarding extreme events.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-023-10126-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent decades, extreme precipitation events have increased in frequency and intensity in Greece and across regions of the Mediterranean, with significant environmental and socioeconomic impacts. Therefore, extensive statistical analysis of the extreme rainfall characteristics on a dense temporal scale is crucial for areas with important economic activity. For this reason, this paper uses the daily precipitation measurements of four meteorological stations in a mining area of northeastern Chalkidiki peninsula from 2006 to 2021. Three statistical approaches were carried out to develop the best-fitting probability distribution for annual extreme precipitation conditions, using the maximum likelihood method for parameter estimation: the block maxima of the generalized extreme value (GEV) distribution and the peak over threshold of the generalized Pareto distribution (GPD) based on extreme value theory (EVT), and the gamma distribution. Based upon this fitting distribution procedure, return periods for the extreme precipitation values were calculated. Results indicate that EVT distributions satisfactorily fit extreme precipitation, with GPD being the most appropriate, and lead to similar conclusions regarding extreme events.

Abstract Image

矿区极端降水数据建模
近几十年来,极端降水事件在希腊和地中海各地区发生的频率和强度都有所增加,对环境和社会经济造成了重大影响。因此,在密集的时间尺度上对极端降水特征进行广泛的统计分析,对于有重要经济活动的地区至关重要。为此,本文使用了查尔基迪基半岛东北部矿区四个气象站 2006 年至 2021 年的日降水量测量数据。本文采用三种统计方法,即基于极值理论(EVT)的广义极值分布(GEV)的块状最大值和广义帕累托分布(GPD)的峰值超过阈值,以及伽马分布,利用最大似然法进行参数估计,为年度极端降水条件建立最佳拟合概率分布。根据这一拟合分布程序,计算了极端降水值的回归期。结果表明,EVT 分布与极端降水量的拟合效果令人满意,而 GPD 分布最为合适,并得出了类似的极端事件结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信