{"title":"The Multisensor Data Fusion Method Based on Improved Fuzzy Evidence Theory in the Coal Mine Environment","authors":"Lei Wang, Chenyan Fu, Junyan Qi","doi":"10.1155/2024/5581891","DOIUrl":null,"url":null,"abstract":"An enhanced evidence theory-based multisensor data fusion technique is presented to address the problem of poor data fusion caused by an unknown interference in the fully automated mining face multisensor system of a coal mine. Initially, the set of all measurement values is considered as the identification framework, and the principles of fuzzy mathematics are applied to introduce the membership function. This leads to the proposal of a novel method for calculating mutual support among multiple sensors. Furthermore, the basic belief assignment (BBA) in evidence theory is determined by measuring the confidence distance between sensors. Subsequently, a divergence measure is employed to assess the level of conflict and difference between BBA functions, which serves as an indicator of their credibility. The credibility of BBA functions is further adjusted by calculating their information volume using Shannon entropy. This adjustment aims to increase the weight of BBA functions that exhibit less conflict with other BBA functions. Ultimately, the fusion result is obtained through an evidence combination rule based on a conflict allocation. The numerical experimental results demonstrate that the proposed approach achieves higher accuracy, better robustness, and generality compared to the existing methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/5581891","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An enhanced evidence theory-based multisensor data fusion technique is presented to address the problem of poor data fusion caused by an unknown interference in the fully automated mining face multisensor system of a coal mine. Initially, the set of all measurement values is considered as the identification framework, and the principles of fuzzy mathematics are applied to introduce the membership function. This leads to the proposal of a novel method for calculating mutual support among multiple sensors. Furthermore, the basic belief assignment (BBA) in evidence theory is determined by measuring the confidence distance between sensors. Subsequently, a divergence measure is employed to assess the level of conflict and difference between BBA functions, which serves as an indicator of their credibility. The credibility of BBA functions is further adjusted by calculating their information volume using Shannon entropy. This adjustment aims to increase the weight of BBA functions that exhibit less conflict with other BBA functions. Ultimately, the fusion result is obtained through an evidence combination rule based on a conflict allocation. The numerical experimental results demonstrate that the proposed approach achieves higher accuracy, better robustness, and generality compared to the existing methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.