Change in rate of healthcare encounters for respiratory infection from air pollution exposure after improved vehicle emissions standards in New York State
Daniel P. Croft, Mark J. Utell, Han Liu, Shao Lin, Philip K. Hopke, Sally W. Thurston, Yunle Chen, David Q. Rich
{"title":"Change in rate of healthcare encounters for respiratory infection from air pollution exposure after improved vehicle emissions standards in New York State","authors":"Daniel P. Croft, Mark J. Utell, Han Liu, Shao Lin, Philip K. Hopke, Sally W. Thurston, Yunle Chen, David Q. Rich","doi":"10.1007/s11869-024-01505-6","DOIUrl":null,"url":null,"abstract":"<div><p>The introduction of Tier 3 light-duty vehicles with reduced emissions began in New York State (NYS) in 2017, with required compliance by 2025. We hypothesized that improved air quality during the early implementation of Tier 3 (2017–2019) would result in reduced rates of hospitalizations and emergency department (ED) visits for respiratory infection associated with increased PM<sub>2.5</sub> compared to 2014–2016 (pre-Tier 3). Using data on adult patients hospitalized or having an ED visit for influenza, upper respiratory infection, culture-negative pneumonia, or respiratory bacterial infection, living within 15 miles of six air quality monitoring sites in NY, and a case-crossover design and conditional logistic regression, we estimated the rates of respiratory infection hospitalizations and ED visits associated with increased ambient PM<sub>2.5</sub> concentrations in the previous 0–6 days and each week thereafter up to 1 month. Interquartile range (IQR) increases in PM<sub>2.5</sub> in the previous 6 days were associated with 4.6% (95% CI: − 0.5, 10.1) and 11.9% (95% CI = 6.1, 18.0) increased rates of influenza hospitalizations in 2014–2016 and 2017–2019, respectively. This pattern of larger relative rates in 2017–2019 observed at all lag times was only present in males hospitalized for influenza but not other infections or in females. The rates of respiratory infection visits associated with increased PM<sub>2.5</sub> were generally not reduced in this early Tier 3 implementation period compared to 2014–2016. Limited fleet penetration of Tier 3 vehicles and differences in particle deposition, infection type, and sex by period may all have contributed to this lack of improvement.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 6","pages":"1267 - 1280"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11869-024-01505-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01505-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The introduction of Tier 3 light-duty vehicles with reduced emissions began in New York State (NYS) in 2017, with required compliance by 2025. We hypothesized that improved air quality during the early implementation of Tier 3 (2017–2019) would result in reduced rates of hospitalizations and emergency department (ED) visits for respiratory infection associated with increased PM2.5 compared to 2014–2016 (pre-Tier 3). Using data on adult patients hospitalized or having an ED visit for influenza, upper respiratory infection, culture-negative pneumonia, or respiratory bacterial infection, living within 15 miles of six air quality monitoring sites in NY, and a case-crossover design and conditional logistic regression, we estimated the rates of respiratory infection hospitalizations and ED visits associated with increased ambient PM2.5 concentrations in the previous 0–6 days and each week thereafter up to 1 month. Interquartile range (IQR) increases in PM2.5 in the previous 6 days were associated with 4.6% (95% CI: − 0.5, 10.1) and 11.9% (95% CI = 6.1, 18.0) increased rates of influenza hospitalizations in 2014–2016 and 2017–2019, respectively. This pattern of larger relative rates in 2017–2019 observed at all lag times was only present in males hospitalized for influenza but not other infections or in females. The rates of respiratory infection visits associated with increased PM2.5 were generally not reduced in this early Tier 3 implementation period compared to 2014–2016. Limited fleet penetration of Tier 3 vehicles and differences in particle deposition, infection type, and sex by period may all have contributed to this lack of improvement.
期刊介绍:
Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health.
It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes.
International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals.
Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements.
This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.