Coupled fixed point results for new classes of functions on ordered vector metric space

Pub Date : 2024-01-31 DOI:10.1007/s10474-024-01393-3
C. Çevik, Ç. C. Özeken
{"title":"Coupled fixed point results for new classes of functions on ordered vector metric space","authors":"C. Çevik,&nbsp;Ç. C. Özeken","doi":"10.1007/s10474-024-01393-3","DOIUrl":null,"url":null,"abstract":"<div><p>The contraction condition in the Banach contraction principle\nforces a function to be continuous. Many authors overcome this obligation and\nweaken the hypotheses via metric spaces endowed with a partial order. In this paper,\nwe present some coupled fixed point theorems for the functions having mixed\nmonotone properties on ordered vector metric spaces, which are more general\nspaces than partially ordered metric spaces. We also define the double monotone\nproperty and investigate the previous results with this property. In the last\nsection, we prove the uniqueness of a coupled fixed point for non-monotone functions.\nIn addition, we present some illustrative examples to emphasize that our\nresults are more general than the ones in the literature.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10474-024-01393-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01393-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The contraction condition in the Banach contraction principle forces a function to be continuous. Many authors overcome this obligation and weaken the hypotheses via metric spaces endowed with a partial order. In this paper, we present some coupled fixed point theorems for the functions having mixed monotone properties on ordered vector metric spaces, which are more general spaces than partially ordered metric spaces. We also define the double monotone property and investigate the previous results with this property. In the last section, we prove the uniqueness of a coupled fixed point for non-monotone functions. In addition, we present some illustrative examples to emphasize that our results are more general than the ones in the literature.

分享
查看原文
有序向量度量空间上新函数类别的耦合定点结果
摘要 巴拿赫收缩原理中的收缩条件要求函数是连续的。许多学者通过赋予部分阶的度量空间来克服这一义务并弱化假设。本文提出了有序向量度量空间上具有混合单调性质的函数的一些耦合定点定理,有序向量度量空间是比部分有序度量空间更一般的空间。我们还定义了双单调性质,并研究了具有该性质的前人成果。最后一节,我们证明了非单调函数耦合定点的唯一性。此外,我们还列举了一些说明性的例子,以强调我们的结果比文献中的结果更具一般性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信