The algebraic entropy of one-dimensional finitary linear cellular automata

Pub Date : 2024-01-30 DOI:10.1515/jgth-2023-0092
Hasan Akın, Dikran Dikranjan, Anna Giordano Bruno, Daniele Toller
{"title":"The algebraic entropy of one-dimensional finitary linear cellular automata","authors":"Hasan Akın, Dikran Dikranjan, Anna Giordano Bruno, Daniele Toller","doi":"10.1515/jgth-2023-0092","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to present one-dimensional finitary linear cellular automata 𝑆 on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mi>m</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0092_ineq_0001.png\" /> <jats:tex-math>\\mathbb{Z}_{m}</jats:tex-math> </jats:alternatives> </jats:inline-formula> from an algebraic point of view. Among various other results, we (i) show that the Pontryagin dual <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mover accent=\"true\"> <m:mi>S</m:mi> <m:mo>̂</m:mo> </m:mover> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0092_ineq_0002.png\" /> <jats:tex-math>\\hat{S}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of 𝑆 is a classical one-dimensional linear cellular automaton 𝑇 on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mi>m</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0092_ineq_0001.png\" /> <jats:tex-math>\\mathbb{Z}_{m}</jats:tex-math> </jats:alternatives> </jats:inline-formula>; (ii) give several equivalent conditions for 𝑆 to be invertible with inverse a finitary linear cellular automaton; (iii) compute the algebraic entropy of 𝑆, which coincides with the topological entropy of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>T</m:mi> <m:mo>=</m:mo> <m:mover accent=\"true\"> <m:mi>S</m:mi> <m:mo>̂</m:mo> </m:mover> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0092_ineq_0004.png\" /> <jats:tex-math>T=\\hat{S}</jats:tex-math> </jats:alternatives> </jats:inline-formula> by the so-called Bridge Theorem. In order to better understand and describe entropy, we introduce the degree <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>deg</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>S</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0092_ineq_0005.png\" /> <jats:tex-math>\\deg(S)</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>deg</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0092_ineq_0006.png\" /> <jats:tex-math>\\deg(T)</jats:tex-math> </jats:alternatives> </jats:inline-formula> of 𝑆 and 𝑇.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to present one-dimensional finitary linear cellular automata 𝑆 on Z m \mathbb{Z}_{m} from an algebraic point of view. Among various other results, we (i) show that the Pontryagin dual S ̂ \hat{S} of 𝑆 is a classical one-dimensional linear cellular automaton 𝑇 on Z m \mathbb{Z}_{m} ; (ii) give several equivalent conditions for 𝑆 to be invertible with inverse a finitary linear cellular automaton; (iii) compute the algebraic entropy of 𝑆, which coincides with the topological entropy of T = S ̂ T=\hat{S} by the so-called Bridge Theorem. In order to better understand and describe entropy, we introduce the degree deg ( S ) \deg(S) and deg ( T ) \deg(T) of 𝑆 and 𝑇.
分享
查看原文
一维有限线性蜂窝自动机的代数熵
本文旨在从代数角度介绍 Z m \mathbb{Z}_{m} 上的一维有限线性蜂窝自动机𝑆。在其他各种结果中,我们 (i) 证明了𝑆 的庞特里亚金对偶 S ̂ \hat{S} 是 Z m \mathbb{Z}_{m} 上的经典一维线性蜂窝自动机 𝑇 ;(iii) 计算𝑆的代数熵,根据所谓的桥定理,代数熵与 T = S ̂ T=\hat{S} 的拓扑熵重合。为了更好地理解和描述熵,我们引入了𝑆 和 𝑇 的度 deg ( S ) \deg(S) 和 deg ( T ) \deg(T)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信