Alpha and beta-voltaic silicon devices operated at cryogenic temperatures: An energy source for deep space exploration

Vittorio Giulio Palmieri , Maurizio Casalino , Emiliano Di Gennaro , Emanuele Romeo , Roberto Russo
{"title":"Alpha and beta-voltaic silicon devices operated at cryogenic temperatures: An energy source for deep space exploration","authors":"Vittorio Giulio Palmieri ,&nbsp;Maurizio Casalino ,&nbsp;Emiliano Di Gennaro ,&nbsp;Emanuele Romeo ,&nbsp;Roberto Russo","doi":"10.1016/j.nxener.2024.100101","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays the interest in deep space exploration is very strong; however, powering devices where sunlight is unavailable is a challenging task. Conventional radioisotope thermoelectric generators are difficult to miniaturize, while low-energy particle voltaic devices lack sufficient power density. In this study, we experimentally investigated the use of state-of-the-art 5 × 5 mm<sup>2</sup> silicon pad radiation detectors operated at cryogenic temperatures as high-energy particle voltaic devices. Our results show that operating the detectors at 80 K with <sup>241</sup>Am (0.1 mCi) and <sup>90</sup>Sr- <sup>90</sup>Y (0.8 mCi) radioactive sources results in a maximum electrical power of 100 nW/cm<sup>2</sup> and 165 nW/cm<sup>2</sup>, respectively. These values correspond to 11% and 12% efficiency, which is unprecedented for silicon voltaic devices. Additionally, we found that the device’s radiation hardness significantly increases at cryogenic temperatures, consistent with the Lazarus effect. After more than 270 h of continuous irradiation with the <sup>90</sup>Sr- <sup>90</sup>Y source at 80 K, the device’s residual efficiency is as high as 1.8% and remains stable. This efficiency value could be increased by stacking multiple devices together, while passive radiative cooling in space allows reaching cryogenic temperatures without extra power.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000061/pdfft?md5=0567eb6ca9032a6d8eb6b7f685c10954&pid=1-s2.0-S2949821X24000061-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays the interest in deep space exploration is very strong; however, powering devices where sunlight is unavailable is a challenging task. Conventional radioisotope thermoelectric generators are difficult to miniaturize, while low-energy particle voltaic devices lack sufficient power density. In this study, we experimentally investigated the use of state-of-the-art 5 × 5 mm2 silicon pad radiation detectors operated at cryogenic temperatures as high-energy particle voltaic devices. Our results show that operating the detectors at 80 K with 241Am (0.1 mCi) and 90Sr- 90Y (0.8 mCi) radioactive sources results in a maximum electrical power of 100 nW/cm2 and 165 nW/cm2, respectively. These values correspond to 11% and 12% efficiency, which is unprecedented for silicon voltaic devices. Additionally, we found that the device’s radiation hardness significantly increases at cryogenic temperatures, consistent with the Lazarus effect. After more than 270 h of continuous irradiation with the 90Sr- 90Y source at 80 K, the device’s residual efficiency is as high as 1.8% and remains stable. This efficiency value could be increased by stacking multiple devices together, while passive radiative cooling in space allows reaching cryogenic temperatures without extra power.

在低温条件下运行的阿尔法和贝塔光伏硅装置:深空探索的能源
如今,人们对深空探索的兴趣非常浓厚;然而,在没有阳光的地方为设备供电是一项具有挑战性的任务。传统的放射性同位素热电发生器难以小型化,而低能粒子伏特装置又缺乏足够的功率密度。在这项研究中,我们通过实验研究了在低温条件下使用最先进的 5 × 5 mm2 硅垫辐射探测器作为高能粒子伏发电设备的情况。结果表明,在 80 K 温度下使用 241Am(0.1 mCi)和 90Sr- 90Y(0.8 mCi)放射源操作探测器,最大电功率分别为 100 nW/cm2 和 165 nW/cm2。这些数值相当于 11% 和 12% 的效率,这在硅伏特设备中是前所未有的。此外,我们还发现该器件的辐射硬度在低温条件下会显著增加,这与拉扎罗斯效应是一致的。在 80 K 温度下,90Sr- 90Y 源连续辐照超过 270 小时后,该器件的残余效率高达 1.8%,并保持稳定。这一效率值可以通过将多个装置堆叠在一起来提高,而空间被动辐射冷却则可以在不需要额外功率的情况下达到低温。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信