Inequalities for polynomials satisfying \(p(z)\equiv z^np(1/z)\)

IF 0.6 3区 数学 Q3 MATHEMATICS
A. Dalal, N. K. Govil
{"title":"Inequalities for polynomials satisfying \\(p(z)\\equiv z^np(1/z)\\)","authors":"A. Dalal,&nbsp;N. K. Govil","doi":"10.1007/s10474-024-01395-1","DOIUrl":null,"url":null,"abstract":"<div><p>Finding the sharp estimate of <span>\\(\\max_{|z|=1} |p'(z)|\\)</span> in terms of <span>\\(\\max_{|z|=1} |p(z)|\\)</span> for the class of polynomials p(z) satisfying <span>\\(p(z) \\equiv z^n p(1/z)\\)</span> has been a well-known open problem for a long time and many papers in this direction have appeared. The earliest result is due to Govil, Jain and Labelle \n[9] \nwho proved that for polynomials p(z) satisfying <span>\\(p(z) \\equiv z^n p(1/z)\\)</span> and having all the zeros either in left half or right half-plane, the inequality <span>\\(\\max_{|z|=1} |p'(z)| \\le \\frac{n}{\\sqrt{2}} \\max_{|z|=1} |p(z)|\\)</span> holds. A question was posed whether this inequality is sharp. In this paper, we answer this question in the negative by obtaining a bound sharper than <span>\\(\\frac{n}{\\sqrt{2}}\\)</span>. We also conjecture that for such polynomials\n </p><div><div><span>$$\\max_{|z|=1} |p'(z)| \\le \\Big(\\frac{n}{\\sqrt{2}} - \\frac{\\sqrt{2}-1}{4}(n-2)\\Big) \\max_{|z|=1} |p(z)|$$</span></div></div><p> \nand provide evidence in support of this conjecture.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"172 1","pages":"146 - 160"},"PeriodicalIF":0.6000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01395-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Finding the sharp estimate of \(\max_{|z|=1} |p'(z)|\) in terms of \(\max_{|z|=1} |p(z)|\) for the class of polynomials p(z) satisfying \(p(z) \equiv z^n p(1/z)\) has been a well-known open problem for a long time and many papers in this direction have appeared. The earliest result is due to Govil, Jain and Labelle [9] who proved that for polynomials p(z) satisfying \(p(z) \equiv z^n p(1/z)\) and having all the zeros either in left half or right half-plane, the inequality \(\max_{|z|=1} |p'(z)| \le \frac{n}{\sqrt{2}} \max_{|z|=1} |p(z)|\) holds. A question was posed whether this inequality is sharp. In this paper, we answer this question in the negative by obtaining a bound sharper than \(\frac{n}{\sqrt{2}}\). We also conjecture that for such polynomials

$$\max_{|z|=1} |p'(z)| \le \Big(\frac{n}{\sqrt{2}} - \frac{\sqrt{2}-1}{4}(n-2)\Big) \max_{|z|=1} |p(z)|$$

and provide evidence in support of this conjecture.

满足 $$p(z)\equiv z^np(1/z)$$ 的多项式不等式
根据 \(\max_{|z|=1} 求出 \(\max_{|z|=1} 的尖锐估计值对于满足 \(p(z) |\(\max_{|z|=1}) 的多项式 p(z) 类,用 \(\max_{|z|=1}) 来表示 |p'(z)|\)长期以来,对于满足 \(p(z) \equiv z^n p(1/z)\) 的多项式 p(z) 类来说,|p(z)|\) 一直是一个众所周知的开放性问题,并且已经出现了许多这方面的论文。最早的结果是由 Govil、Jain 和 Labelle [9] 提出的,他们证明了对于多项式 p(z) 满足 \(p(z) \equiv z^n p(1/z)\) 并且所有零点都在左半平面或右半平面上时,不等式 \(\max_|{z|=1}|p'(z)| le \frac{n}{\sqrt{2}}\max_{|z|=1}|p(z)|)成立。有人提出这个不等式是否尖锐的问题。在本文中,我们得到了比\(\frac{n}{/sqrt{2}}\) 更尖锐的约束,从而对这个问题做出了否定的回答。我们还猜想,对于这样的多项式 $$\max_{|z|=1}|p'(z)| le \Big(\frac{n}{\sqrt{2}}- \max_{|z|=1} |p(z)|p(z)|$$ 并提供支持这一猜想的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信